Getting trapped in labyrinths by anomalous diffusion

Eirik G. Flekkøy and Knut Jørgen Måløy

Labyrints and frictional fluid flow

- Bjørnar Sandnes
- Henning Arendt Knudsen
- Knut Jørgen Måløy
- Jon Alm Eriksen
- Renaud Toussaint

Labyrints and frictional fluid flow

Experiments

simulations

Bjørnar Sandnes

Henning A. Knudsen

Fluid flow with friction and capillarity

Particle-particle interactions transmit stress to the wall

Labyrinth topology

Both displaced (land) and displacing (sea) structures are simply connected.

Backbone and dead ends of several generations

Existing labyrinths

Disconnected element

Existing labyrinths

A result of folding of a circle

Folding of a 1D structure.

How may the geometry be characterized further ?

Folding of 2D structures:

Vigeland park (another folded 1D structure)

Random walk on labyrinth

Averaging over random walks started in the center

Simulated labyrinths with finger width 1 cm

Averaging over random walks started in the center

Simulated labyrinths with finger width 1 cm

Experimental labyrinths and comparison

Anomalous diffusion

In general a random walk is described as

$$\langle r^2(t) \rangle = \sum_{n=1}^N \langle r_n^2 \rangle = \langle r_n^2 \rangle(t) N(t)$$

Resulting in normal diffusion $\langle r^2(t) \rangle = 2Dt$ if

$$\langle r_n^2 \rangle(t) = a^2$$

 $N(t) = rac{t}{ au}$

Anomalous diffusion happens if this is not the case.

PHYSICS REPORTS (Review Section of Physics Letters) 195 Nos 4 & 5 (1990) 127-293 North-Holland

ANOMALOUS DIFFUSION IN DISORDERED MEDIA: STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS

Jean-Philippe BOUCHAUD Laboratoire de Physique Statistique de l'Ecole Normale Superieure^{*} 24, rue Lhomond, 75231 Paris Cedex 05, France

and

Antoine GEORGES** Laboratoire de Physique Theorique de l'Ecole Normale Superieure', 24, rue Lhomond, 75231 Paris Cedex 05, France

Diffusion on percolation clusters.

Theory for subdiffusion due to long waiting times

Length along backbone r_B

Conjecture $\langle r^2(t) \rangle \sim \langle r_B^2(t) \rangle$ $\langle r_B^2(t) \rangle = \sum_{n=1}^N \langle r_n^2 \rangle = \langle r_n^2 \rangle N$

The waiting times τ to return to the backbone is distributed as

$$P(au) \propto rac{1}{ au^{3/2}}$$

 $N \propto t^{1/2}$

 $\langle r^2(t)\rangle \sim t^{1/2}$

E W Montroll and H Scher, J Stat Phys 9 (1973) 101

Diffusion on combs J Machta, J Phys A 18 (1985)

Lower packing fraction

No longer $\tau \ll t_c = l_b/(2D)$

Diffusion on land

No longer $\ au \ll t_c = l_b/(2D)$

Diffusion on land or water -- comparison

Steady heating by constant C in center – a different diffusion problem

A fixed number 10 random walkers is maintained in the small central disk

Maintaining a constant concentration in the center

Transport rates:

$$\dot{M} \propto C_0 \left\{ \begin{array}{ll} \frac{1}{\sqrt{t}} & \text{absorbed in a 2D labyrinth} \\ \frac{1}{\ln(t/a)} & \text{in 2D open space} \\ \frac{1}{r_c} & \text{in 3D open space} \end{array} \right.$$

Delayed absorption or desorption – a potentially useful property for controlled drug- release.

Steady heating by constant C in center, diffusion on land

A fixed number of 5 or 20 random walkers is maintained in the small central disk

Summary

- Diffusivity characterizes geometry in a non-trivial way
- Structures quickly enter regime of anomalous diffusion ($\tau \ll t_c = l_b/(2D)$)
- Experimentally feasible

Steady heating by constant C in center, diffusion without boundaries

(3)

implies that

A fixed number of 10 random walkers is maintained in a small central disk of variable size,

$$Z(t) = 10^{\log_{10}(t) - \log_{10}(M)} = \frac{\log_{10}(t) - \log_{10}(a)}{B}$$
(4)

which is indeed seen to hold with $B \approx 125$ and $a \approx 0.025$ s s. The time t_n is in units that are linked to the step length of the random walker, and $t_n = 9 \ 10^{-4}n$ s where n is the integer time step. The only time-scale available in the problem is the one given by the inner circle radius $r_c = 3$ mm, and the diffusivity $D = (1/2) \text{cm}^2/2$, i.e. $\tau = 2r_c^2/D = 0.09$ s which is of the same order of magnitude as a

 $M(t) = B \frac{t}{\log_{10}(t/a)}$

The patterns

Backbone and dead ends of several generations

Steady heating by constant C in center, diffusion without boundaries

A fixed number of 10 random walkers is maintained in a small central disk of variable size,

The ant in the labyrinth P.G. de Gennes, La Recherche 7 (1976) Diffusion on percolation clusters.

PHYSICS REPORTS (Review Section of Physics Letters) 195 Nos 4 & 5 (1990) 127-293 North-Holland

PHYSICAL REVIEW E 95, 012139 (2017)

Minimal model for anomalous diffusion

Eirik G. Flekkøy*

ANOMALOUS DIFFUSION IN DISORDERED MEDIA: STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS

Jean-Philippe BOUCHAUD Laboratoire de Physique Statistique de l'Ecole Normale Superieure^{*} 24, rue Lhomond, 75231 Paris Cedex 05, France

and

Antoine GEORGES** Laboratoire de Physique Theorique de l'Ecole Normale Superieure', 24, rue Lhomond, 75231 Paris Cedex 05, France

E W Montroll and H Scher, J Stat Phys 9 (1973) 101

Diffusion on combs J Machta, J Phys A 18 (1985) L531