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Overview

+ Background

+ Main features in the behavior of frozen soils
» Elasto-plastic model

» Elasto-viscoplastic model

* Results




Background

* Challenges in the arctic
— Coastal erosion
— Settlements
— Thawing permafrost

» Challenges in the
subpolar and
temperate zones

— Seasonal frost




Background (cont.)

« Atrtificial ground freezing




Frozen soil testing at NTNU ® ‘

* New 20MPa triaxial cell (GDS)

e -30°Cto +65°C

e Up to 250 kN of axial load

¢ Accurate high pressure volume controllers
* Local displacement transducers




Example

» Heat storage and (over)extraction
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The physical system of 1D ground freezing @ '

Thermal flux

Heave |

Phase change

Water migration

[m]

=

DA



Modelling of frozen soils ® '

» Total stress models
— Pure mechanical
— Parameters given for one temperature -> change in temp. ->
change in parameters
» Effective stress models
— For THM modelling
— Ice as fluid or solid?



Saturated frozen soils



lce content ® ‘

Poor ice soils:
— Binding effects on grains An increase in ice content
— lce cementation » results in an increase in
strength

Ice rich soils: . -
. An increase in ice content
— Decreases grains contact results in a decrease in

strength
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Schematic of ice increasing in an ice rich soil body
[ 20 40 60 80 100 (Li et al. 2002)
TOTAL MOISTURE CONTENT, 4
Effect of total moisture on strength of frozen soil
(adopted from Baker 1979)
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Temperature ® '

Decreasing temperature results in:
— An increase in elastic modulus
— An increase in strength

In other word: Change of behavior from plastic type to a brittle type

Deviatoric stress (MPa)

« « « Experimental |
—— Numerical
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Stress-strain curves at different temperatures
(Xu 2014)
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Confining pressure O '

Low pressure: (Region |)
— Confining pressure makes the solid phase (soil and ice) more compact
—-> Strength increases with confining pressure

High pressure: (Region 2)
- Ice in the sample begins to be crushed
- Pressure melting occurs
- Strength decreases with confining pressure
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teximum Shear Stress (11 kipfagin
e

Higher pressure: (Region 3)
- lIce content tends to zero
— Strength increases with confining pressure
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Relation between strength and confining pressure
(Chamberlin et al. 1972)
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Strain rate ® ‘

Increasing strain rate results in:

deviatoric stress g [kPa]

- Anincrease in strength

- More brittle behavior
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Cryogenic suction

v' Clausius-Clapeyron Equation:

Suction = f (Temperature)

v’ Freezing Characteristic Function:

Ice content = f (Suction)

Studying the effect of suction could be sufficient for

capturing the effects of ice content and temperature
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Curvature-induced pre-melting mechanism
Result of surface tension

Pl’e-m e|t| n g Dyn am | C (Weelaufer and Worster 200’ '

Acts very similar to capillary suction
Bonding the grains together

Interfacial pre-melting mechanism

Result of disjoining pressure

Acts as a repelling force between ice and grains

Tends to widen the gap by sucking in more water

Curvature-induced

premelting

Combination of these mechanisms

controls the behavior against ice

Interfacial premelting

content and temperature variations.



Elastoplatic Model ® ‘

Solid phase (consists of

Frozen soil could be explained by————— _ particles and ice)

L——> Water phase

The behavior will be explained in two stress-state variables framework:

Solid phase 6 =6-s,p,I

stress:

Cryogenic S, = —plint
cry — P, =P =—p T

suction: T,
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Fundamentals of elasto[visco]plasticity @ .

» Stresses and State variables (o, K)

* Elastic, do =D - de®

* Yield surface(s), F < 0 [or reference surface(s)]

* Flow rule deMr =dA-0Q/do <-> Potential surface(s), Q
» Hardening rules, h (dk/dA)

* Fl(p*!qlscry’pc*’sw)
c — 9’ n1,2,3 F2 (Scry’ Sseg ) P
» s

op
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Elastoplastic model (cont.) O '

/
j p’

Due to ice cohesion

Yield surfaces in S, — p* space Yield surface in p* - q space

Complete yield surfaces:
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(cont.)

By freezing, the material goes from a porous

material to a non-porous material /

Yield and plastic potential should be

saturation dependent

Deviatoric Stress

F :(p~+kts)[(p*+k‘5)s$ -(p; +k¢3)]+[%]

* 2 2
. PL—kS .
Q1:5${P 7%} *(qﬁ)

Solid Phase Mean Stress
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Elasto-viscoplastic model ® '

*

i

Dynamic Surface

Reference Surface
Over-stress method \ KA .
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Reference Surface

Dynamic Surface

; Current Suction
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Model Results
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Deviatoric Stress (MPa)

Model Results: Triaxial tests under
different temperatures

* Data (Xu, 2014)
—Model

10 15
Axial Strain (%)

Confining pressure: 1 MPa
Strain rate: Constant

Volumetric Strain (%)
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© Data (Xu, 2014)
—Model

Axial Strain (%)
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Model Results: Compression tests at ® '
different strain rates

4
® Data (Zhu & Carbee, 1984)

—Model
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Compressive Stress (MPa)
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Model Results: Creep tests at different ® '
temperatures and stress level

o Data (Eckardt, 1979)
—Model

o=1MPa
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Time (hr)

Temperature = -5 °C
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« Data (Eckardt, 1979)

—Model
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Temperature =-15° C
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Boundary Value Problems
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BWPs

Artificial ground freezing, surface heave
30 days 210 days

Manuel Aukenthaler, TUD and PLAXIS

Artificial ground freezing, temperature distribution
10 days 180 days
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BWP — Caen experiment

The longitudinal section

Hooman Rostami, NTNU

R

Heave (cm)

Final level of soi

The transverse section

Pipe Movement

[ Exporimontal Rosufs
[ Numarical simulation *

50 100 150 200 250 300 350
Time (Days)



BWP — Caen experiment —cont. @ '
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EVP- Plate loading experiment

subjected to seasonal temperature variation (Zhang et al., 2014)
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