Steady-state, simultaneous two-phase flow in porous media: An experimental study

University of Oslo

Ken Tore Tallakstad Marion Erpelding Grunde Løvoll Henning Arendt Knudsen Olav Aursjø Eirik Grude Flekkøy Knut Jørgen Måløy

University of Strasbourg Renaud Toussaint

NTNU Trondheim

Alex Hansen Santanu Sinha Thomas Ramstad

Experimental setup

Simultaneous injection of two fluids.

Will discuss two cases:

- A) Non wetting fluid: Air Wetting fluid: Water-glycerol (15% water b.w.) Viscosity contrast 10⁻⁴, Surface tension 0,064 Nm⁻¹
- B) Non wetting fluid: Rapeseed Oil Wetting fluid: Water-glycerol (20%water b.w) Viscosity contrast 1.3, Surface tension 0,019 Nm⁻¹

- Case A)
- Non wetting fluid: Air
- Wetting fluid: Water-glycerol

Front propagation

Transient regime

 $Ca = \frac{\mu_w Q_w a^2}{\gamma \kappa_0 A}$

Ca=0.0079

Dynamic cluster configuration

Steady state regime

Fast experiment.

10 times real time, Ca=0.090

Fractional flow rate:

 $F=Q_{nw}/Q_{tot}=1/2$

10cm x 15 cm section in the middle Of the model.

Slow experiment

120 times real time, Ca=0.0079

10cm x 15 cm section in the middle Of the model.

Non wetting fluid: Air Wetting fluid: Water-glycerol

Pressure dependence on capillary number Ca.

Tallakstad et al PRL 102, 0742, (2009)

Assumption: Flow restricted to narrow channels separated a distance corresponding to the characteristic cluster size.

Total flux of wetting fluid:

Trapped air

cluster

$$Q = q \cdot N = a^2 \cdot \frac{a^2}{\mu} \frac{\Delta P}{L} \cdot \frac{L}{l^*}$$

$$\Delta P \propto Q^{1/2} \propto C a^{1/2}$$

L

Balance between viscous pressure and capillary threshold.

$$I^* \; \frac{\Delta P}{L} \; = \Delta P_c = P_d - P_i$$

Theory by Eirik G. Flekkøy

Cluster size distribution

$$p(s) \propto s^{-\tau} \exp(-s/s^*),$$

 $\tau = 2.0 \pm 0.2$

$$s^* \propto \mathrm{Ca}^{-\zeta},$$

 $\zeta = 0.98 \pm 0.07$

Tallakstad et al. PRE 80, 036308 (2009)

Question: is this "steady state" really a state?

i.e., does it depend on the history of the system ?

Marion Erpelding et al. PRE, 88, 053004, (2013)

Case B:

Non wetting fluid: Rapeseed Oil

Wetting fluid: Water-glycerol

Table 2 Total flow rates \mathcal{Q}_{tot} and capillary numbers Ca corresponding
o the legend numbers presented in the forthcoming graphs.

Legend no.	Q _{tot} [ml/min]	Ca
1	0.30	0.0241
2	0.45	0.0362
3	0.60	0.0482
4	0.90	0.0723
5	1.2	0.0964
6	1.8	0.145
7	2.4	0.193
8	3.6	0.289

"Static" cluster configuration

For $Q_{tot} = 0.3$ ml/min and $F_{oil} = 1/2$,

Average position <y> of changes as function of time.

"Static" cluster configuration

Flow by film or flow trough capillary bridges.

Film flow and capillary bridges

Experiment by Marcel Moura

Monem Ayaz

4

Pressure dependence on capillary number Ca.

 $\Delta P_{ss} \sim Q_{tot}^{\beta},$

 $\beta_{1/2, 2/3} = 0.67 \pm 0.05$ for $F_{\text{oil}} = 1/2$ and 2/3, $\beta_{1/3} = 0.74 \pm 0.05$ for $F_{\text{oil}} = 1/3$.

Aursjø et al. Frontiers in Physics (2014)

Cluster size distribution

$$p(s) \propto s^{-\tau} \exp(-s/s^*),$$

 $au_{2/3} = 1.37 \pm 0.09, \ au_{1/2} = 1.43 \pm 0.06,$ $au_{1/3} = 1.48 \pm 0.04,$ $\zeta_{2/3} = 0.89 \pm 0.08, \ \zeta_{1/2} = 0.67 \pm 0.05,$ $\zeta_{1/3} = 0.51 \pm 0.05$ Aursjø et al. Frontiers in Physics (2014)

 $s^* \propto Q_{tot}^{-\zeta}$

Summary

Air + water/glycerol	Oil + Water/glycerol
Compressible	Incompressible
$\Delta P_{ss} \sim Q_{tot}^{eta}, \ eta = 0.54 \pm 0.08$	$\beta = 0.67 \pm 0.05$
$p(s) \propto s^{-\tau} \exp(-s/s^*),$ $\tau = 2.07 \pm 0.18$	$\tau = 1.43 \pm 0.06$
Dynamic air cluster configuration	Static glycerol/water cluster configuration
History independence	?