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Simultaneous	  	  injec:on	  of	  	  two	  	  fluids.	  	  
	  
Will	  discuss	  two	  cases:	  
	  
A)  Non	  weUng	  fluid:	  Air	  	  	  	  	  	  WeUng	  fluid:	  	  Water-‐glycerol	  	  	  (15%	  water	  b.w.)	  
	  	  	  	  	  	  	  Viscosity	  contrast	  10-‐4,	  	  Surface	  tension	  	  0,064	  Nm-‐1	  
	  
	  
B)  Non	  weUng	  fluid:	  	  Rapeseed	  Oil	  	  	  WeUng	  fluid:	  Water-‐glycerol	  (20%water	  b.w)	  
	  	  	  	  	  	  	  Viscosity	  contrast	  1.3,	  	  	  	  	  Surface	  tension	  	  0,019	  Nm-‐1	  	  
	  
	  
	  	  	  



Case	  A)	  
	  
Non	  weUng	  fluid:	  Air	  	  	  	  	  	  	  
	  
WeUng	  fluid:	  	  Water-‐glycerol	  



The color scale contains 256 gray levels. The gray level dis-
tribution of the image presents two peaks corresponding, re-
spectively, to the white air-filled and dark gray glycerol-filled
parts of the image. The image is thresholded at a constant
offset from the white peak so as to obtain a representative
boundary between the two phases !18". All further image
treatments are performed on the resulting black and white
image. The exact choice of the threshold value influences the
extracted results. However, by visual inspection and analyses
of results from a range of threshold values around the chosen
one, the deviations are found to be small and systematic with
this perturbation. We therefore claim that this procedure of
choosing the threshold value is consistent and that the result-
ing data may be compared directly.

Close to the inlet and to a small degree along the model
perimeter, there are boundary effects in the displacement
structure. To avoid these, we define a #69!30$ cm region of
interest #ROI$ in the central part of the model. Image analy-
sis is then performed only inside this ROI.

In all experiments the porous model is initially filled with
the wetting glycerol-water solution. An experiment is then
started by injecting the wetting fluid and the nonwetting fluid
from every other inlet hole #Fig. 2$. Counting from one side
this means that syringes 1 ,3 ,5 , . . . ,15 altogether eight indi-
vidual syringes for the wetting fluid are used for the injec-
tion. Similarly, syringes 2 ,4 ,6 , . . . ,14 altogether seven indi-
vidual syringes are used for the nonwetting fluid. The
movements of all 15 syringes are controlled by the same step
motor, setting an equal displacement rate.

III. RESULTS

As the nonwetting fluid enters the model, it first forms
elongated clusters which are connected with their respective
inlets. As these clusters grow, they are snapped off by the
wetting fluid and transported as bubbles along the flow to-
ward the outlet of the model. Over time the nonwetting air
clusters propagate all the way to the outlet of the model, thus
filling the whole porous matrix with a mixture of air and
glycerol-water solution. The air only exists in the form of
fragmented clusters while the glycerol-water solution perco-
lates the model at all times. It is observed that the smallest
air clusters usually are immobile and trapped. Larger clusters
on the other hand are mobile and propagate in the porous
medium. However, mobilization of trapped clusters can oc-
cur when they coalesce with larger migrating clusters. Con-
versely, fragmentation and trapping of migrating clusters also
take place, so the fate of an air cluster is thus highly unde-
cided. In this context it is worth mentioning the detailed
pore-scale study of cluster mobilization and entrapment by
Avraam and Payatakes !23,39".

We run the experiment for a significant time after air
breakthrough. Shortly after breakthrough the transport pro-
cess reaches steady state, meaning that both phases are trans-
ported through the model without “long-time” flow param-
eter changes, implying that the pressure difference, relative
permeabilities, saturations, and cluster distributions are on
average constant. Images of the evolution of the transient
part of a typical experiment are shown in Fig. 3.

In Fig. 4 pressure differences over the model are plotted
as function of time. Three pressure sensors are used: at the
inlet, in the middle of the model, and at the outlet. Even
though pressure measurements are local, and measured in the
wetting phase, they reflect on average the global pressure
development of both phases. If both phases are present along
a given cross section transverse to the flow, the pressure
along this cross section will only vary by small capillary and
viscous fluctuations. Due to the size of our system and the
high viscosity of the wetting phase, the measured pressure
drop is much larger than these fluctuations. Physically rel-
evant for the motion inside the model is the pressure differ-
ence between #i$ inlet and outlet and #ii$ middle of the model
and outlet which, for brevity, are referred to as inlet and
middle pressures. In Fig. 4#a$ we can see the signature of a
“breakthrough” just before t%60 min in the pressure sig-
nals. Here, the apparent linear increase in pressure stops.
Shortly after this time the two signals approach a constant
level as we reach steady state. In the transient regime the
overall pressure behavior at the two sensors appears differ-
ent. As air enters the model, the inlet pressure starts to in-
crease and it increases linearly until breakthrough, while the
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FIG. 3. For the Ca=0.0079 experiment, the system is shown at
three different times. Both fluids are injected at left hand side; the
outlet is at the right. The upper panel shows a sample in the early
transient regime. The water-glycerol mixture is of dark color. This
is best seen to the right of the upper panel, where the small bright
dots are the solid glass beads. The air is bright white, and glass
beads surrounded by air may be indiscernible. The middle panel
shows a later stage in the transient. The lower panel shows fully
developed steady state.
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weight glycerol-water solution dyed with 0.1% Negrosine
and has a viscosity !w ¼ 0:11 Pa s at room temperature.
Air is used as the nonwetting fluid with viscosity !nw ¼
1:9" 10#5 Pa s, giving a viscosity ratio M ¼ !nw=!w $
10#4. The surface tension is measured to be " ¼ 6:4"
10#2 Nm#1.

The tuning parameter in the experiments is the total flow
rate, i.e., the sum of the flow rate of the wetting and
nonwetting fluid, and can during steady state be written
as Qtot ¼ Qw þQnw ¼ ð8þ 7ÞQ0, where Q0 is the flow
rate from every single syringe.

Gray scale images of the flow structure are taken at
regular intervals with a Pixelink Industrial Vision PL-
A781 digital camera. An image contains 3000" 2208
pixels, corresponding to a spatial resolution of $0:19 mm
per pixel (27 pixels in a pore of size 1 mm2). All analysis is
done on the basis of black and white thresholded images
[14] and the measured pressure signals.

The porous model is initially saturated with the wetting
phase. An experiment is started by injecting the fluid pair
from every other inlet hole. The initial structure consists of
bubbles or clusters of air distributed over various sizes, but
always much smaller than the system size. The clusters are
embedded in a background field of percolating wetting
fluid. Usually, the smallest air clusters are immobile and
trapped, whereas larger clusters are mobile and propagate
in the porous medium. However, trapped clusters can be
mobilized when they coalesce with larger migrating clus-
ters, and migrating clusters can be fragmented and thereby
trapped.

We divide an experiment into two regimes. A transient
regime where the mix of nonwetting clusters and wetting
fluid gradually fills up the model, as seen in Fig. 1. During
this time, the measured average pressure difference be-
tween y ¼ 0 and y ¼ L, !PL, increases. This is due to
the presence of more and more air clusters trapped in the
system, effectively lowering the relative permeability for
the viscous wetting fluid. At some characteristic time,
shortly after both phases are produced at the outlet, !PL

starts to fluctuate around a constant value. This marks the
start of the steady-state (or statistically stationary) regime.
The whole model now contains a homogeneous mix of the
two phases, transported through the model without ‘‘long
time’’ flow parameter changes.

Through six experiments we have studied how the mea-
sured steady-state pressure difference !PL varies with the
capillary number Ca, defined as

Ca ¼ !wQwa
2

"#0A
; (1)

where A ¼ Wa is the cross-sectional area. This is shown in
Fig. 2, for a span in the Ca number of roughly two decades.
The steady-state pressure fluctuations are Gaussian, indi-
cating that !PL results from a sum of independent, local
pressure differences over scales smaller than the system
size. It is evident that the pressure is consistent with a
power law in the Ca number !PL / Ca$, where the ex-

ponent is found to be $ ¼ 0:54( 0:08. This is a nontrivial
result, and we will return to the discussion shortly.
A general trend in the experiments, in passing from high

to low Ca numbers, is that the size or area of the largest air
clusters increases. This means that the geometry of the
clusters depends on the steady-state pressure gradient. To
quantify this, we have found the normalized probability
distributions of cluster extension in the x and y directions,
PðlxÞ and PðlyÞ, respectively (see Fig. 3). We define the

extension lengths lx and ly as the sides of the smallest

rectangle (bounding box) that can contain a cluster. For
clarity, ly lays parallel whereas lx lays transverse to the

average flow direction.
Analysis shows that, for a cluster of a given area s, the

extension lengths have well defined means hlxi and hlyi
increasing monotonically with s [23]. The corresponding
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FIG. 2. Mean pressure difference !PL during steady state as a
function of Ca. The fluctuations in !PL are of the order of 1 kPa,
i.e., very small compared to the mean values. A power law
dependence is found, with exponent $ ¼ 0:54( 0:08.
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FIG. 3. Air cluster extension length distributions PðlyÞ (filled
markers) and PðlxÞ (empty markers), collapsed by the rescaling
l)%PðliÞ vs li=l

), where i 2 fx; yg and % ¼ 2:8. The dashed
vertical line at li ¼ l) indicates the start of the different cutoff
behavior in the two directions. The lower left inset shows (solid
line) !PL / 1=l) with the corresponding experimental values
(squares). The upper right inset shows !l=hlyi vs hlxihlyi=l)2,
where !l ¼ hlyi# hlxi.
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Fast	  experiment.	  
	  
10	  ames	  real	  ame,	  	  Ca=0.090	  

10cm	  x	  15	  cm	  	  secaon	  in	  the	  middle	  
Of	  the	  model.	  	  	  

Fracaonal	  flow	  	  rate:	  	  
	  
F=Qnw/Qtot=1/2	  
	  



Slow	  experiment	  
	  
120	  ames	  real	  ame,	  	  Ca=0.0079	  
	  

10cm	  x	  15	  cm	  	  secaon	  in	  the	  middle	  
Of	  the	  model.	  	  	  

Non	  weUng	  fluid:	  Air	  	  	  	  	  	  
WeUng	  fluid:	  	  Water-‐glycerol	  	  



Pressure	  dependence	  on	  	  	  	  capillary	  number	  Ca	  .	  

N = L/l⇤ (1)

l⇤ (2)

Q = q ·N = a2 · a
2

µ

�P

L
· L
l⇤

(3)

�P ⇣

l⇤
= �Pc = Pd � Pi (4)

Q / (�P )2 (5)

�P / Q1/2 / Ca1/2 (6)

�P / Ca0.54 (7)

l⇤ = Ca�0.57 (8)

⌧ = 2.07 (9)

1

weight glycerol-water solution dyed with 0.1% Negrosine
and has a viscosity !w ¼ 0:11 Pa s at room temperature.
Air is used as the nonwetting fluid with viscosity !nw ¼
1:9" 10#5 Pa s, giving a viscosity ratio M ¼ !nw=!w $
10#4. The surface tension is measured to be " ¼ 6:4"
10#2 Nm#1.

The tuning parameter in the experiments is the total flow
rate, i.e., the sum of the flow rate of the wetting and
nonwetting fluid, and can during steady state be written
as Qtot ¼ Qw þQnw ¼ ð8þ 7ÞQ0, where Q0 is the flow
rate from every single syringe.

Gray scale images of the flow structure are taken at
regular intervals with a Pixelink Industrial Vision PL-
A781 digital camera. An image contains 3000" 2208
pixels, corresponding to a spatial resolution of $0:19 mm
per pixel (27 pixels in a pore of size 1 mm2). All analysis is
done on the basis of black and white thresholded images
[14] and the measured pressure signals.

The porous model is initially saturated with the wetting
phase. An experiment is started by injecting the fluid pair
from every other inlet hole. The initial structure consists of
bubbles or clusters of air distributed over various sizes, but
always much smaller than the system size. The clusters are
embedded in a background field of percolating wetting
fluid. Usually, the smallest air clusters are immobile and
trapped, whereas larger clusters are mobile and propagate
in the porous medium. However, trapped clusters can be
mobilized when they coalesce with larger migrating clus-
ters, and migrating clusters can be fragmented and thereby
trapped.

We divide an experiment into two regimes. A transient
regime where the mix of nonwetting clusters and wetting
fluid gradually fills up the model, as seen in Fig. 1. During
this time, the measured average pressure difference be-
tween y ¼ 0 and y ¼ L, !PL, increases. This is due to
the presence of more and more air clusters trapped in the
system, effectively lowering the relative permeability for
the viscous wetting fluid. At some characteristic time,
shortly after both phases are produced at the outlet, !PL

starts to fluctuate around a constant value. This marks the
start of the steady-state (or statistically stationary) regime.
The whole model now contains a homogeneous mix of the
two phases, transported through the model without ‘‘long
time’’ flow parameter changes.

Through six experiments we have studied how the mea-
sured steady-state pressure difference !PL varies with the
capillary number Ca, defined as

Ca ¼ !wQwa
2

"#0A
; (1)

where A ¼ Wa is the cross-sectional area. This is shown in
Fig. 2, for a span in the Ca number of roughly two decades.
The steady-state pressure fluctuations are Gaussian, indi-
cating that !PL results from a sum of independent, local
pressure differences over scales smaller than the system
size. It is evident that the pressure is consistent with a
power law in the Ca number !PL / Ca$, where the ex-

ponent is found to be $ ¼ 0:54( 0:08. This is a nontrivial
result, and we will return to the discussion shortly.
A general trend in the experiments, in passing from high

to low Ca numbers, is that the size or area of the largest air
clusters increases. This means that the geometry of the
clusters depends on the steady-state pressure gradient. To
quantify this, we have found the normalized probability
distributions of cluster extension in the x and y directions,
PðlxÞ and PðlyÞ, respectively (see Fig. 3). We define the

extension lengths lx and ly as the sides of the smallest

rectangle (bounding box) that can contain a cluster. For
clarity, ly lays parallel whereas lx lays transverse to the

average flow direction.
Analysis shows that, for a cluster of a given area s, the

extension lengths have well defined means hlxi and hlyi
increasing monotonically with s [23]. The corresponding
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FIG. 2. Mean pressure difference !PL during steady state as a
function of Ca. The fluctuations in !PL are of the order of 1 kPa,
i.e., very small compared to the mean values. A power law
dependence is found, with exponent $ ¼ 0:54( 0:08.
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FIG. 3. Air cluster extension length distributions PðlyÞ (filled
markers) and PðlxÞ (empty markers), collapsed by the rescaling
l)%PðliÞ vs li=l

), where i 2 fx; yg and % ¼ 2:8. The dashed
vertical line at li ¼ l) indicates the start of the different cutoff
behavior in the two directions. The lower left inset shows (solid
line) !PL / 1=l) with the corresponding experimental values
(squares). The upper right inset shows !l=hlyi vs hlxihlyi=l)2,
where !l ¼ hlyi# hlxi.
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weight glycerol-water solution dyed with 0.1% Negrosine
and has a viscosity !w ¼ 0:11 Pa s at room temperature.
Air is used as the nonwetting fluid with viscosity !nw ¼
1:9" 10#5 Pa s, giving a viscosity ratio M ¼ !nw=!w $
10#4. The surface tension is measured to be " ¼ 6:4"
10#2 Nm#1.

The tuning parameter in the experiments is the total flow
rate, i.e., the sum of the flow rate of the wetting and
nonwetting fluid, and can during steady state be written
as Qtot ¼ Qw þQnw ¼ ð8þ 7ÞQ0, where Q0 is the flow
rate from every single syringe.

Gray scale images of the flow structure are taken at
regular intervals with a Pixelink Industrial Vision PL-
A781 digital camera. An image contains 3000" 2208
pixels, corresponding to a spatial resolution of $0:19 mm
per pixel (27 pixels in a pore of size 1 mm2). All analysis is
done on the basis of black and white thresholded images
[14] and the measured pressure signals.

The porous model is initially saturated with the wetting
phase. An experiment is started by injecting the fluid pair
from every other inlet hole. The initial structure consists of
bubbles or clusters of air distributed over various sizes, but
always much smaller than the system size. The clusters are
embedded in a background field of percolating wetting
fluid. Usually, the smallest air clusters are immobile and
trapped, whereas larger clusters are mobile and propagate
in the porous medium. However, trapped clusters can be
mobilized when they coalesce with larger migrating clus-
ters, and migrating clusters can be fragmented and thereby
trapped.

We divide an experiment into two regimes. A transient
regime where the mix of nonwetting clusters and wetting
fluid gradually fills up the model, as seen in Fig. 1. During
this time, the measured average pressure difference be-
tween y ¼ 0 and y ¼ L, !PL, increases. This is due to
the presence of more and more air clusters trapped in the
system, effectively lowering the relative permeability for
the viscous wetting fluid. At some characteristic time,
shortly after both phases are produced at the outlet, !PL

starts to fluctuate around a constant value. This marks the
start of the steady-state (or statistically stationary) regime.
The whole model now contains a homogeneous mix of the
two phases, transported through the model without ‘‘long
time’’ flow parameter changes.

Through six experiments we have studied how the mea-
sured steady-state pressure difference !PL varies with the
capillary number Ca, defined as

Ca ¼ !wQwa
2

"#0A
; (1)

where A ¼ Wa is the cross-sectional area. This is shown in
Fig. 2, for a span in the Ca number of roughly two decades.
The steady-state pressure fluctuations are Gaussian, indi-
cating that !PL results from a sum of independent, local
pressure differences over scales smaller than the system
size. It is evident that the pressure is consistent with a
power law in the Ca number !PL / Ca$, where the ex-

ponent is found to be $ ¼ 0:54( 0:08. This is a nontrivial
result, and we will return to the discussion shortly.
A general trend in the experiments, in passing from high

to low Ca numbers, is that the size or area of the largest air
clusters increases. This means that the geometry of the
clusters depends on the steady-state pressure gradient. To
quantify this, we have found the normalized probability
distributions of cluster extension in the x and y directions,
PðlxÞ and PðlyÞ, respectively (see Fig. 3). We define the

extension lengths lx and ly as the sides of the smallest

rectangle (bounding box) that can contain a cluster. For
clarity, ly lays parallel whereas lx lays transverse to the

average flow direction.
Analysis shows that, for a cluster of a given area s, the

extension lengths have well defined means hlxi and hlyi
increasing monotonically with s [23]. The corresponding
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FIG. 2. Mean pressure difference !PL during steady state as a
function of Ca. The fluctuations in !PL are of the order of 1 kPa,
i.e., very small compared to the mean values. A power law
dependence is found, with exponent $ ¼ 0:54( 0:08.
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FIG. 3. Air cluster extension length distributions PðlyÞ (filled
markers) and PðlxÞ (empty markers), collapsed by the rescaling
l)%PðliÞ vs li=l

), where i 2 fx; yg and % ¼ 2:8. The dashed
vertical line at li ¼ l) indicates the start of the different cutoff
behavior in the two directions. The lower left inset shows (solid
line) !PL / 1=l) with the corresponding experimental values
(squares). The upper right inset shows !l=hlyi vs hlxihlyi=l)2,
where !l ¼ hlyi# hlxi.
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weight glycerol-water solution dyed with 0.1% Negrosine
and has a viscosity !w ¼ 0:11 Pa s at room temperature.
Air is used as the nonwetting fluid with viscosity !nw ¼
1:9" 10#5 Pa s, giving a viscosity ratio M ¼ !nw=!w $
10#4. The surface tension is measured to be " ¼ 6:4"
10#2 Nm#1.

The tuning parameter in the experiments is the total flow
rate, i.e., the sum of the flow rate of the wetting and
nonwetting fluid, and can during steady state be written
as Qtot ¼ Qw þQnw ¼ ð8þ 7ÞQ0, where Q0 is the flow
rate from every single syringe.

Gray scale images of the flow structure are taken at
regular intervals with a Pixelink Industrial Vision PL-
A781 digital camera. An image contains 3000" 2208
pixels, corresponding to a spatial resolution of $0:19 mm
per pixel (27 pixels in a pore of size 1 mm2). All analysis is
done on the basis of black and white thresholded images
[14] and the measured pressure signals.

The porous model is initially saturated with the wetting
phase. An experiment is started by injecting the fluid pair
from every other inlet hole. The initial structure consists of
bubbles or clusters of air distributed over various sizes, but
always much smaller than the system size. The clusters are
embedded in a background field of percolating wetting
fluid. Usually, the smallest air clusters are immobile and
trapped, whereas larger clusters are mobile and propagate
in the porous medium. However, trapped clusters can be
mobilized when they coalesce with larger migrating clus-
ters, and migrating clusters can be fragmented and thereby
trapped.

We divide an experiment into two regimes. A transient
regime where the mix of nonwetting clusters and wetting
fluid gradually fills up the model, as seen in Fig. 1. During
this time, the measured average pressure difference be-
tween y ¼ 0 and y ¼ L, !PL, increases. This is due to
the presence of more and more air clusters trapped in the
system, effectively lowering the relative permeability for
the viscous wetting fluid. At some characteristic time,
shortly after both phases are produced at the outlet, !PL

starts to fluctuate around a constant value. This marks the
start of the steady-state (or statistically stationary) regime.
The whole model now contains a homogeneous mix of the
two phases, transported through the model without ‘‘long
time’’ flow parameter changes.

Through six experiments we have studied how the mea-
sured steady-state pressure difference !PL varies with the
capillary number Ca, defined as

Ca ¼ !wQwa
2

"#0A
; (1)

where A ¼ Wa is the cross-sectional area. This is shown in
Fig. 2, for a span in the Ca number of roughly two decades.
The steady-state pressure fluctuations are Gaussian, indi-
cating that !PL results from a sum of independent, local
pressure differences over scales smaller than the system
size. It is evident that the pressure is consistent with a
power law in the Ca number !PL / Ca$, where the ex-

ponent is found to be $ ¼ 0:54( 0:08. This is a nontrivial
result, and we will return to the discussion shortly.
A general trend in the experiments, in passing from high

to low Ca numbers, is that the size or area of the largest air
clusters increases. This means that the geometry of the
clusters depends on the steady-state pressure gradient. To
quantify this, we have found the normalized probability
distributions of cluster extension in the x and y directions,
PðlxÞ and PðlyÞ, respectively (see Fig. 3). We define the

extension lengths lx and ly as the sides of the smallest

rectangle (bounding box) that can contain a cluster. For
clarity, ly lays parallel whereas lx lays transverse to the

average flow direction.
Analysis shows that, for a cluster of a given area s, the

extension lengths have well defined means hlxi and hlyi
increasing monotonically with s [23]. The corresponding
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FIG. 2. Mean pressure difference !PL during steady state as a
function of Ca. The fluctuations in !PL are of the order of 1 kPa,
i.e., very small compared to the mean values. A power law
dependence is found, with exponent $ ¼ 0:54( 0:08.
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vertical line at li ¼ l) indicates the start of the different cutoff
behavior in the two directions. The lower left inset shows (solid
line) !PL / 1=l) with the corresponding experimental values
(squares). The upper right inset shows !l=hlyi vs hlxihlyi=l)2,
where !l ¼ hlyi# hlxi.
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weight glycerol-water solution dyed with 0.1% Negrosine
and has a viscosity !w ¼ 0:11 Pa s at room temperature.
Air is used as the nonwetting fluid with viscosity !nw ¼
1:9" 10#5 Pa s, giving a viscosity ratio M ¼ !nw=!w $
10#4. The surface tension is measured to be " ¼ 6:4"
10#2 Nm#1.

The tuning parameter in the experiments is the total flow
rate, i.e., the sum of the flow rate of the wetting and
nonwetting fluid, and can during steady state be written
as Qtot ¼ Qw þQnw ¼ ð8þ 7ÞQ0, where Q0 is the flow
rate from every single syringe.

Gray scale images of the flow structure are taken at
regular intervals with a Pixelink Industrial Vision PL-
A781 digital camera. An image contains 3000" 2208
pixels, corresponding to a spatial resolution of $0:19 mm
per pixel (27 pixels in a pore of size 1 mm2). All analysis is
done on the basis of black and white thresholded images
[14] and the measured pressure signals.

The porous model is initially saturated with the wetting
phase. An experiment is started by injecting the fluid pair
from every other inlet hole. The initial structure consists of
bubbles or clusters of air distributed over various sizes, but
always much smaller than the system size. The clusters are
embedded in a background field of percolating wetting
fluid. Usually, the smallest air clusters are immobile and
trapped, whereas larger clusters are mobile and propagate
in the porous medium. However, trapped clusters can be
mobilized when they coalesce with larger migrating clus-
ters, and migrating clusters can be fragmented and thereby
trapped.

We divide an experiment into two regimes. A transient
regime where the mix of nonwetting clusters and wetting
fluid gradually fills up the model, as seen in Fig. 1. During
this time, the measured average pressure difference be-
tween y ¼ 0 and y ¼ L, !PL, increases. This is due to
the presence of more and more air clusters trapped in the
system, effectively lowering the relative permeability for
the viscous wetting fluid. At some characteristic time,
shortly after both phases are produced at the outlet, !PL

starts to fluctuate around a constant value. This marks the
start of the steady-state (or statistically stationary) regime.
The whole model now contains a homogeneous mix of the
two phases, transported through the model without ‘‘long
time’’ flow parameter changes.

Through six experiments we have studied how the mea-
sured steady-state pressure difference !PL varies with the
capillary number Ca, defined as

Ca ¼ !wQwa
2

"#0A
; (1)

where A ¼ Wa is the cross-sectional area. This is shown in
Fig. 2, for a span in the Ca number of roughly two decades.
The steady-state pressure fluctuations are Gaussian, indi-
cating that !PL results from a sum of independent, local
pressure differences over scales smaller than the system
size. It is evident that the pressure is consistent with a
power law in the Ca number !PL / Ca$, where the ex-

ponent is found to be $ ¼ 0:54( 0:08. This is a nontrivial
result, and we will return to the discussion shortly.
A general trend in the experiments, in passing from high

to low Ca numbers, is that the size or area of the largest air
clusters increases. This means that the geometry of the
clusters depends on the steady-state pressure gradient. To
quantify this, we have found the normalized probability
distributions of cluster extension in the x and y directions,
PðlxÞ and PðlyÞ, respectively (see Fig. 3). We define the

extension lengths lx and ly as the sides of the smallest

rectangle (bounding box) that can contain a cluster. For
clarity, ly lays parallel whereas lx lays transverse to the

average flow direction.
Analysis shows that, for a cluster of a given area s, the

extension lengths have well defined means hlxi and hlyi
increasing monotonically with s [23]. The corresponding

0.01 0.1
Ca

10

100

∆P
L (k

Pa
)

∆P
L
 ~ Ca

0.54

FIG. 2. Mean pressure difference !PL during steady state as a
function of Ca. The fluctuations in !PL are of the order of 1 kPa,
i.e., very small compared to the mean values. A power law
dependence is found, with exponent $ ¼ 0:54( 0:08.
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FIG. 3. Air cluster extension length distributions PðlyÞ (filled
markers) and PðlxÞ (empty markers), collapsed by the rescaling
l)%PðliÞ vs li=l

), where i 2 fx; yg and % ¼ 2:8. The dashed
vertical line at li ¼ l) indicates the start of the different cutoff
behavior in the two directions. The lower left inset shows (solid
line) !PL / 1=l) with the corresponding experimental values
(squares). The upper right inset shows !l=hlyi vs hlxihlyi=l)2,
where !l ¼ hlyi# hlxi.
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little previous results exists, makes it difficult to say whether
this is intuitively correct. Numerical studies have sought af-
ter relations between saturation and other flow properties
!33,34". However, another factor, to be discussed in Sec.
III D, are possible compressibility effects. It is a priori not
clear that the saturation would be the same if the air were
incompressible. This is an issue that we will pursue in further
studies.

Figure 7#a$ shows the mean steady-state pressure differ-
ence !Pss as a function of the capillary number Ca. The
pressure fluctuations are small as shown in the pressure dis-
tributions PDF#!P−!Pss$ in the inset of Fig. 7#a$. For all
experiments the standard deviation in !Pss is on the order of
1 kPa. It is evident that !Pss follows a power law in Ca,

!Pss " Ca#, #3$

with the exponent

# = 0.54 $ 0.08. #4$

This behavior is by no means obvious !36", and we will
return to a physical interpretation and quantitative derivation
of this result in Sec. III C.

C. Cluster size distributions

After the systems have entered into steady state, we have
analyzed images of the structure in order to determine the
size distribution of nonwetting clusters or bubbles. The nor-
malized probability density function #PDF$ p#s$ as a function
of cluster size s for all Ca numbers investigated is shown in
Fig. 8#a$. A trivial observation is the decrease in probability
with increasing cluster size. Less obvious is the fact that the
curves show an exponential-like cutoff depending on the
capillary number. Additionally there is a cutoff region for
smaller clusters, as the cluster size approaches the bead size.
Since the beads are counted as part of the clusters during
image analysis, we have no information at this size scale. For
the highest Ca numbers, the whole distribution is dominated
by the exponential cutoff. However, as the Ca number is
decreased, a small region of power-law-like behavior is ob-
served in between the two cutoffs.

Analogously to what is done in percolation theory !37",
we assume that the distribution of the clusters follows the
PDF,

p#s$ " s−% exp#− s/s!$ , #5$

where s! is the cutoff cluster size. The latter function has
been fitted, using a proportionality constant % and s! as fit
parameters, to the experimental data for each Ca number.
This is shown by the solid lines in Fig. 8#a$. By averaging
the fitted % exponents it is found that %=2.07$0.18. The
uncertainty only reflects the difference in fitted exponents.
From the distributions it is seen that no power-law region is
well pronounced, and we do not claim that % is determined
with a large degree of certainty in this case. When it comes
to the cutoff cluster size, the fitted values of s! are found to
scale with Ca !Eq. #1$" as

s! " Ca−&, #6$

where &=0.98$0.07. This is shown in the inset of Fig. 8#b$.
One should note, even for the lowest Ca number, that s!

%105 pixels is considerably smaller than the system size
%107 pixels, meaning that large-scale finite-size effects
should not be of importance. Equation #5$ predicts a rescal-
ing of the horizontal and the vertical axes with 1 /s! and s!%,
respectively. On this basis the data collapse in Fig. 8#b$ is
obtained.

From the above considerations, the cluster size PDF of
nonwetting clusters in steady state obeys the scaling function

p#s$ " s!−%H#s/s!$ , #7$

where H#x$ contains an exponential cutoff !Eq. #5$", so that
p#s$→0 when x'1.

Up to now the cluster size measured in area was studied.
One step further is to consider the linear extension of the
clusters in the two directions: lx transverse to the overall
direction of flow and ly oriented along the overall direction
of flow. This is achieved by assigning a bounding box of
sides lx and ly to a cluster of size s, i.e., the smallest rectangle
that can contain the cluster. In the following, li, where i
! &x ,y', will denote both the lx and the ly extensions. It is
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FIG. 8. #Color online$ Nonwetting cluster size PDF p#s$ in
steady state for all experiments. The cluster size s is measured in
pixels; 1 pixel=0.037 mm2. #a$ Normalized probability distribu-
tions. The dominating cutoff behavior is evident. The solid lines
represent fits of Eq. #5$. #b$ The horizontal and the vertical axes are
rescaled with 1 /s! and s!%, respectively, to obtain the data collapse.
The Ca dependence of the cutoff cluster size s! is shown in the
inset.
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little previous results exists, makes it difficult to say whether
this is intuitively correct. Numerical studies have sought af-
ter relations between saturation and other flow properties
!33,34". However, another factor, to be discussed in Sec.
III D, are possible compressibility effects. It is a priori not
clear that the saturation would be the same if the air were
incompressible. This is an issue that we will pursue in further
studies.

Figure 7#a$ shows the mean steady-state pressure differ-
ence !Pss as a function of the capillary number Ca. The
pressure fluctuations are small as shown in the pressure dis-
tributions PDF#!P−!Pss$ in the inset of Fig. 7#a$. For all
experiments the standard deviation in !Pss is on the order of
1 kPa. It is evident that !Pss follows a power law in Ca,

!Pss " Ca#, #3$

with the exponent

# = 0.54 $ 0.08. #4$

This behavior is by no means obvious !36", and we will
return to a physical interpretation and quantitative derivation
of this result in Sec. III C.

C. Cluster size distributions

After the systems have entered into steady state, we have
analyzed images of the structure in order to determine the
size distribution of nonwetting clusters or bubbles. The nor-
malized probability density function #PDF$ p#s$ as a function
of cluster size s for all Ca numbers investigated is shown in
Fig. 8#a$. A trivial observation is the decrease in probability
with increasing cluster size. Less obvious is the fact that the
curves show an exponential-like cutoff depending on the
capillary number. Additionally there is a cutoff region for
smaller clusters, as the cluster size approaches the bead size.
Since the beads are counted as part of the clusters during
image analysis, we have no information at this size scale. For
the highest Ca numbers, the whole distribution is dominated
by the exponential cutoff. However, as the Ca number is
decreased, a small region of power-law-like behavior is ob-
served in between the two cutoffs.

Analogously to what is done in percolation theory !37",
we assume that the distribution of the clusters follows the
PDF,

p#s$ " s−% exp#− s/s!$ , #5$

where s! is the cutoff cluster size. The latter function has
been fitted, using a proportionality constant % and s! as fit
parameters, to the experimental data for each Ca number.
This is shown by the solid lines in Fig. 8#a$. By averaging
the fitted % exponents it is found that %=2.07$0.18. The
uncertainty only reflects the difference in fitted exponents.
From the distributions it is seen that no power-law region is
well pronounced, and we do not claim that % is determined
with a large degree of certainty in this case. When it comes
to the cutoff cluster size, the fitted values of s! are found to
scale with Ca !Eq. #1$" as

s! " Ca−&, #6$

where &=0.98$0.07. This is shown in the inset of Fig. 8#b$.
One should note, even for the lowest Ca number, that s!

%105 pixels is considerably smaller than the system size
%107 pixels, meaning that large-scale finite-size effects
should not be of importance. Equation #5$ predicts a rescal-
ing of the horizontal and the vertical axes with 1 /s! and s!%,
respectively. On this basis the data collapse in Fig. 8#b$ is
obtained.

From the above considerations, the cluster size PDF of
nonwetting clusters in steady state obeys the scaling function

p#s$ " s!−%H#s/s!$ , #7$

where H#x$ contains an exponential cutoff !Eq. #5$", so that
p#s$→0 when x'1.

Up to now the cluster size measured in area was studied.
One step further is to consider the linear extension of the
clusters in the two directions: lx transverse to the overall
direction of flow and ly oriented along the overall direction
of flow. This is achieved by assigning a bounding box of
sides lx and ly to a cluster of size s, i.e., the smallest rectangle
that can contain the cluster. In the following, li, where i
! &x ,y', will denote both the lx and the ly extensions. It is
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FIG. 8. #Color online$ Nonwetting cluster size PDF p#s$ in
steady state for all experiments. The cluster size s is measured in
pixels; 1 pixel=0.037 mm2. #a$ Normalized probability distribu-
tions. The dominating cutoff behavior is evident. The solid lines
represent fits of Eq. #5$. #b$ The horizontal and the vertical axes are
rescaled with 1 /s! and s!%, respectively, to obtain the data collapse.
The Ca dependence of the cutoff cluster size s! is shown in the
inset.
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little previous results exists, makes it difficult to say whether
this is intuitively correct. Numerical studies have sought af-
ter relations between saturation and other flow properties
!33,34". However, another factor, to be discussed in Sec.
III D, are possible compressibility effects. It is a priori not
clear that the saturation would be the same if the air were
incompressible. This is an issue that we will pursue in further
studies.

Figure 7#a$ shows the mean steady-state pressure differ-
ence !Pss as a function of the capillary number Ca. The
pressure fluctuations are small as shown in the pressure dis-
tributions PDF#!P−!Pss$ in the inset of Fig. 7#a$. For all
experiments the standard deviation in !Pss is on the order of
1 kPa. It is evident that !Pss follows a power law in Ca,

!Pss " Ca#, #3$

with the exponent

# = 0.54 $ 0.08. #4$

This behavior is by no means obvious !36", and we will
return to a physical interpretation and quantitative derivation
of this result in Sec. III C.

C. Cluster size distributions

After the systems have entered into steady state, we have
analyzed images of the structure in order to determine the
size distribution of nonwetting clusters or bubbles. The nor-
malized probability density function #PDF$ p#s$ as a function
of cluster size s for all Ca numbers investigated is shown in
Fig. 8#a$. A trivial observation is the decrease in probability
with increasing cluster size. Less obvious is the fact that the
curves show an exponential-like cutoff depending on the
capillary number. Additionally there is a cutoff region for
smaller clusters, as the cluster size approaches the bead size.
Since the beads are counted as part of the clusters during
image analysis, we have no information at this size scale. For
the highest Ca numbers, the whole distribution is dominated
by the exponential cutoff. However, as the Ca number is
decreased, a small region of power-law-like behavior is ob-
served in between the two cutoffs.

Analogously to what is done in percolation theory !37",
we assume that the distribution of the clusters follows the
PDF,

p#s$ " s−% exp#− s/s!$ , #5$

where s! is the cutoff cluster size. The latter function has
been fitted, using a proportionality constant % and s! as fit
parameters, to the experimental data for each Ca number.
This is shown by the solid lines in Fig. 8#a$. By averaging
the fitted % exponents it is found that %=2.07$0.18. The
uncertainty only reflects the difference in fitted exponents.
From the distributions it is seen that no power-law region is
well pronounced, and we do not claim that % is determined
with a large degree of certainty in this case. When it comes
to the cutoff cluster size, the fitted values of s! are found to
scale with Ca !Eq. #1$" as

s! " Ca−&, #6$

where &=0.98$0.07. This is shown in the inset of Fig. 8#b$.
One should note, even for the lowest Ca number, that s!

%105 pixels is considerably smaller than the system size
%107 pixels, meaning that large-scale finite-size effects
should not be of importance. Equation #5$ predicts a rescal-
ing of the horizontal and the vertical axes with 1 /s! and s!%,
respectively. On this basis the data collapse in Fig. 8#b$ is
obtained.

From the above considerations, the cluster size PDF of
nonwetting clusters in steady state obeys the scaling function

p#s$ " s!−%H#s/s!$ , #7$

where H#x$ contains an exponential cutoff !Eq. #5$", so that
p#s$→0 when x'1.

Up to now the cluster size measured in area was studied.
One step further is to consider the linear extension of the
clusters in the two directions: lx transverse to the overall
direction of flow and ly oriented along the overall direction
of flow. This is achieved by assigning a bounding box of
sides lx and ly to a cluster of size s, i.e., the smallest rectangle
that can contain the cluster. In the following, li, where i
! &x ,y', will denote both the lx and the ly extensions. It is
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FIG. 8. #Color online$ Nonwetting cluster size PDF p#s$ in
steady state for all experiments. The cluster size s is measured in
pixels; 1 pixel=0.037 mm2. #a$ Normalized probability distribu-
tions. The dominating cutoff behavior is evident. The solid lines
represent fits of Eq. #5$. #b$ The horizontal and the vertical axes are
rescaled with 1 /s! and s!%, respectively, to obtain the data collapse.
The Ca dependence of the cutoff cluster size s! is shown in the
inset.
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little previous results exists, makes it difficult to say whether
this is intuitively correct. Numerical studies have sought af-
ter relations between saturation and other flow properties
!33,34". However, another factor, to be discussed in Sec.
III D, are possible compressibility effects. It is a priori not
clear that the saturation would be the same if the air were
incompressible. This is an issue that we will pursue in further
studies.

Figure 7#a$ shows the mean steady-state pressure differ-
ence !Pss as a function of the capillary number Ca. The
pressure fluctuations are small as shown in the pressure dis-
tributions PDF#!P−!Pss$ in the inset of Fig. 7#a$. For all
experiments the standard deviation in !Pss is on the order of
1 kPa. It is evident that !Pss follows a power law in Ca,

!Pss " Ca#, #3$

with the exponent

# = 0.54 $ 0.08. #4$

This behavior is by no means obvious !36", and we will
return to a physical interpretation and quantitative derivation
of this result in Sec. III C.

C. Cluster size distributions

After the systems have entered into steady state, we have
analyzed images of the structure in order to determine the
size distribution of nonwetting clusters or bubbles. The nor-
malized probability density function #PDF$ p#s$ as a function
of cluster size s for all Ca numbers investigated is shown in
Fig. 8#a$. A trivial observation is the decrease in probability
with increasing cluster size. Less obvious is the fact that the
curves show an exponential-like cutoff depending on the
capillary number. Additionally there is a cutoff region for
smaller clusters, as the cluster size approaches the bead size.
Since the beads are counted as part of the clusters during
image analysis, we have no information at this size scale. For
the highest Ca numbers, the whole distribution is dominated
by the exponential cutoff. However, as the Ca number is
decreased, a small region of power-law-like behavior is ob-
served in between the two cutoffs.

Analogously to what is done in percolation theory !37",
we assume that the distribution of the clusters follows the
PDF,

p#s$ " s−% exp#− s/s!$ , #5$

where s! is the cutoff cluster size. The latter function has
been fitted, using a proportionality constant % and s! as fit
parameters, to the experimental data for each Ca number.
This is shown by the solid lines in Fig. 8#a$. By averaging
the fitted % exponents it is found that %=2.07$0.18. The
uncertainty only reflects the difference in fitted exponents.
From the distributions it is seen that no power-law region is
well pronounced, and we do not claim that % is determined
with a large degree of certainty in this case. When it comes
to the cutoff cluster size, the fitted values of s! are found to
scale with Ca !Eq. #1$" as

s! " Ca−&, #6$

where &=0.98$0.07. This is shown in the inset of Fig. 8#b$.
One should note, even for the lowest Ca number, that s!

%105 pixels is considerably smaller than the system size
%107 pixels, meaning that large-scale finite-size effects
should not be of importance. Equation #5$ predicts a rescal-
ing of the horizontal and the vertical axes with 1 /s! and s!%,
respectively. On this basis the data collapse in Fig. 8#b$ is
obtained.

From the above considerations, the cluster size PDF of
nonwetting clusters in steady state obeys the scaling function

p#s$ " s!−%H#s/s!$ , #7$

where H#x$ contains an exponential cutoff !Eq. #5$", so that
p#s$→0 when x'1.

Up to now the cluster size measured in area was studied.
One step further is to consider the linear extension of the
clusters in the two directions: lx transverse to the overall
direction of flow and ly oriented along the overall direction
of flow. This is achieved by assigning a bounding box of
sides lx and ly to a cluster of size s, i.e., the smallest rectangle
that can contain the cluster. In the following, li, where i
! &x ,y', will denote both the lx and the ly extensions. It is
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FIG. 8. #Color online$ Nonwetting cluster size PDF p#s$ in
steady state for all experiments. The cluster size s is measured in
pixels; 1 pixel=0.037 mm2. #a$ Normalized probability distribu-
tions. The dominating cutoff behavior is evident. The solid lines
represent fits of Eq. #5$. #b$ The horizontal and the vertical axes are
rescaled with 1 /s! and s!%, respectively, to obtain the data collapse.
The Ca dependence of the cutoff cluster size s! is shown in the
inset.
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little previous results exists, makes it difficult to say whether
this is intuitively correct. Numerical studies have sought af-
ter relations between saturation and other flow properties
!33,34". However, another factor, to be discussed in Sec.
III D, are possible compressibility effects. It is a priori not
clear that the saturation would be the same if the air were
incompressible. This is an issue that we will pursue in further
studies.

Figure 7#a$ shows the mean steady-state pressure differ-
ence !Pss as a function of the capillary number Ca. The
pressure fluctuations are small as shown in the pressure dis-
tributions PDF#!P−!Pss$ in the inset of Fig. 7#a$. For all
experiments the standard deviation in !Pss is on the order of
1 kPa. It is evident that !Pss follows a power law in Ca,

!Pss " Ca#, #3$

with the exponent

# = 0.54 $ 0.08. #4$

This behavior is by no means obvious !36", and we will
return to a physical interpretation and quantitative derivation
of this result in Sec. III C.

C. Cluster size distributions

After the systems have entered into steady state, we have
analyzed images of the structure in order to determine the
size distribution of nonwetting clusters or bubbles. The nor-
malized probability density function #PDF$ p#s$ as a function
of cluster size s for all Ca numbers investigated is shown in
Fig. 8#a$. A trivial observation is the decrease in probability
with increasing cluster size. Less obvious is the fact that the
curves show an exponential-like cutoff depending on the
capillary number. Additionally there is a cutoff region for
smaller clusters, as the cluster size approaches the bead size.
Since the beads are counted as part of the clusters during
image analysis, we have no information at this size scale. For
the highest Ca numbers, the whole distribution is dominated
by the exponential cutoff. However, as the Ca number is
decreased, a small region of power-law-like behavior is ob-
served in between the two cutoffs.

Analogously to what is done in percolation theory !37",
we assume that the distribution of the clusters follows the
PDF,

p#s$ " s−% exp#− s/s!$ , #5$

where s! is the cutoff cluster size. The latter function has
been fitted, using a proportionality constant % and s! as fit
parameters, to the experimental data for each Ca number.
This is shown by the solid lines in Fig. 8#a$. By averaging
the fitted % exponents it is found that %=2.07$0.18. The
uncertainty only reflects the difference in fitted exponents.
From the distributions it is seen that no power-law region is
well pronounced, and we do not claim that % is determined
with a large degree of certainty in this case. When it comes
to the cutoff cluster size, the fitted values of s! are found to
scale with Ca !Eq. #1$" as

s! " Ca−&, #6$

where &=0.98$0.07. This is shown in the inset of Fig. 8#b$.
One should note, even for the lowest Ca number, that s!

%105 pixels is considerably smaller than the system size
%107 pixels, meaning that large-scale finite-size effects
should not be of importance. Equation #5$ predicts a rescal-
ing of the horizontal and the vertical axes with 1 /s! and s!%,
respectively. On this basis the data collapse in Fig. 8#b$ is
obtained.

From the above considerations, the cluster size PDF of
nonwetting clusters in steady state obeys the scaling function

p#s$ " s!−%H#s/s!$ , #7$

where H#x$ contains an exponential cutoff !Eq. #5$", so that
p#s$→0 when x'1.

Up to now the cluster size measured in area was studied.
One step further is to consider the linear extension of the
clusters in the two directions: lx transverse to the overall
direction of flow and ly oriented along the overall direction
of flow. This is achieved by assigning a bounding box of
sides lx and ly to a cluster of size s, i.e., the smallest rectangle
that can contain the cluster. In the following, li, where i
! &x ,y', will denote both the lx and the ly extensions. It is
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FIG. 6. (Color online) Grayscale image histograms averaged over
steady-state images for the six experiments listed in Table I. Note
that no image processing has been applied before obtaining these
histograms. Data for steady states ss1, ss2, and ss3 are represented in
black (⃝), blue (!), and red (△), respectively.

Image processing is performed using IMAGEJ [39]. Raw
images are thresholded to obtain binary (black and white)
images on which we run a standard particle analysis
algorithm1 to identify air clusters and measure their sizes
n [40]. From steady-state images, we compute the normalized
probability density functions of n, i.e., nonwetting cluster size
distributions ⟨p(n)⟩, where ⟨· · · ⟩ represents an average over
a series of ≈100 images.

Figure 7 shows the distributions ⟨p(n)⟩ computed for the
six experiments listed in Table I. These distributions typically
display a power-law-like behavior with a cutoff at large cluster
sizes [27,28]. As mentioned by Tallakstad et al. [27], the
obtained distribution is affected by threshold values, which
must thus be carefully chosen using visual inspection. Here,
we focus on the variations of the distribution with the history
of the system. Therefore, the most important requirement
is that the image processing procedure is used consistently
throughout one experiment. To avoid possible bias due to
variations of illumination in the room, the experimental setup
is isolated behind a dark curtain. The camera exposure time
and aperture are the same for all experiments, and we use
the same thresholding parameters, carefully chosen by visual

1We use the “Particles4” IMAGEJ plugin [40].
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FIG. 7. (Color online) Average cluster size distributions ⟨p(n)⟩
computed from steady-state images. Data for steady states ss1, ss2,
and ss3 are represented in black, blue, and red, respectively. Different
symbols refer to averages performed over different series of 100
images, namely, ⃝,• for images in ss1a , +,× in ss1b, !,♦ in ss2 △,▽
in ss3a , and ▹,◃ in ss3b.

inspection, for all experiments. This allows us to compare
images obtained in ss1, ss2, and ss3 for a given experiment and
from one experiment to another in a meaningful way. As we
observed for the histograms, it is possible to distinguish the
ss1 and ss3 distributions from those corresponding to ss2 (see
Fig. 7). This is coherent with the results of previous studies
indicating that distributions are shifting towards higher cluster
sizes when the flow rate is decreased [27,28]. However, the ss1
and ss3 distributions are similar, meaning that the steady-state
nonwetting cluster-size distributions are history independent.
We have checked that whereas varying the threshold values
affects the distributions, typically by shifting them towards
lower or higher cluster sizes, it does not modify the results in
terms of history independence.

The experimental boundary conditions required that the
controlled flow variables were the total flow rate and the
fractional flows. In the next section, we turn to numerical
simulations to further investigate the history dependence of
the steady state for different boundary conditions, as well as
higher Ca values and different viscosity ratios M .

IV. THE NETWORK MODEL

The two-dimensional experimental porous medium is
modeled by a network of tubes oriented at 45◦ with respect
to the overall flow direction. The tubes (or links) intersect
at the vertices (or nodes) of the network with coordination
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FIG. 2. (Color online) Sketch of the experimental setup with the
injection system. The two phases are contained in 15 syringes, each
connected to one of the 15 inlet nodes of the porous model (seven
syringes of air represented in white and eight syringes of water-
glycerol solution in black). The same syringe pump is used to inject
both phases simultaneously. The dotted lines give the dimensions
of the area studied by image analysis (note that proportions are not
respected).

Sw = Vw/V and Snw = Vnw/V , where V is the total pore
volume, are free to fluctuate. The flow is characterized by
the capillary number

Ca = µwQw

γA
, (1)

where µw is the wetting phase viscosity, Qw is the total wetting
fluid flow rate, γ ≈ 6.4 × 10−2 N/m is the interfacial tension
between the two phases [27], and A = Waφ is the cross
section of the porous matrix. In the present experiments, we
have explored the range 3.33 × 10−6 ! Ca ! 1.13 × 10−4.
The highest experimental value of Ca is set by the maximum
pressure that the porous model can hold. However, as we
will see in Sec. IV, we have also explored higher values of
Ca in numerical simulations, namely, 1.92 × 10−5 ! Ca !
7.0 × 10−2. In this range, we always measure a significant
pressure drop in the wetting phase, showing that we are in a
flow regime in which viscous effects cannot be neglected.

Our analysis of steady-state flow and its history dependence
relies on two kinds of information: measurements of the
pressure inside the model, and pictures of the flow pattern. We

viscous air

1 mm(a) (b)Flow
direction

glassviscous
liquid

air
clusters

10 cm

glass
beads

0           100                 255

104x15

10

5

0
(c)

gray level

pi
xe

lc
ou

nt

FIG. 3. (Color online) (a) Example of steady-state image (2400 ×
3800 pixels): The flow pattern is made of air clusters (gray) of various
sizes surrounded by the viscous liquid (black). (b) Zoom: The high
image resolution makes it possible to distinguish glass beads (bright
gray), air clusters (gray), and viscous liquid (black). These three
phases yield three “peaks” on the grayscale image histograms, as
illustrated by (c). The height of the peaks contains information about
the saturation of the system.

measure the pressure P (t) in the wetting phase as a function
of time t using flow-through pressure sensors (SensorTechnics
26PC0100G6G) placed at three different points of the model
as indicated on Fig. 2. The porous model is lit from below
using a lightbox, and images of the flow structure are recorded
regularly using a Nikon D200 digital reflex camera giving
2592 × 3872 pixel images with a spatial resolution of 8 ×
8 pixels/mm2. Before further processing, images are cropped
to remove boundaries, leaving us with 2400 × 3800 pixels on
the final images. Figure 3(a) shows an example of a steady-state
image. The area of the imaged zone (see Fig. 2) is large enough
to contain many air clusters of various sizes. As illustrated
by Fig. 3(b), the high image resolution makes it possible to
distinguish glass beads, air clusters, and viscous liquid. Each
of these phases gives rise to a peak on the grayscale image
histogram [see Fig. 3(c)]. The heights of these peaks contain
information about the proportions of wetting and nonwetting
fluids in the system, and thus about the saturations Sw and Snw.
In all experiments, the smallest air clusters observed have sizes
comparable with the pore size.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Principle of the experiments

We investigate the history dependence of steady-state flow
by comparing steady states obtained at the same flow rate but
with different initial conditions. For this, we have performed
experiments in which the flow rate is modified twice, as
illustrated by Fig. 4(a). The porous model is initially filled
with the wetting phase only. Then both phases are injected
simultaneously at a fixed flow rate Q1. Once the system has
reached a steady state (ss1), we abruptly change the flow rate
to a different value Q2 and wait until a new steady state is
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FIG. 6. (Color online) Grayscale image histograms averaged over
steady-state images for the six experiments listed in Table I. Note
that no image processing has been applied before obtaining these
histograms. Data for steady states ss1, ss2, and ss3 are represented in
black (⃝), blue (!), and red (△), respectively.

Image processing is performed using IMAGEJ [39]. Raw
images are thresholded to obtain binary (black and white)
images on which we run a standard particle analysis
algorithm1 to identify air clusters and measure their sizes
n [40]. From steady-state images, we compute the normalized
probability density functions of n, i.e., nonwetting cluster size
distributions ⟨p(n)⟩, where ⟨· · · ⟩ represents an average over
a series of ≈100 images.

Figure 7 shows the distributions ⟨p(n)⟩ computed for the
six experiments listed in Table I. These distributions typically
display a power-law-like behavior with a cutoff at large cluster
sizes [27,28]. As mentioned by Tallakstad et al. [27], the
obtained distribution is affected by threshold values, which
must thus be carefully chosen using visual inspection. Here,
we focus on the variations of the distribution with the history
of the system. Therefore, the most important requirement
is that the image processing procedure is used consistently
throughout one experiment. To avoid possible bias due to
variations of illumination in the room, the experimental setup
is isolated behind a dark curtain. The camera exposure time
and aperture are the same for all experiments, and we use
the same thresholding parameters, carefully chosen by visual

1We use the “Particles4” IMAGEJ plugin [40].
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FIG. 7. (Color online) Average cluster size distributions ⟨p(n)⟩
computed from steady-state images. Data for steady states ss1, ss2,
and ss3 are represented in black, blue, and red, respectively. Different
symbols refer to averages performed over different series of 100
images, namely, ⃝,• for images in ss1a , +,× in ss1b, !,♦ in ss2 △,▽
in ss3a , and ▹,◃ in ss3b.

inspection, for all experiments. This allows us to compare
images obtained in ss1, ss2, and ss3 for a given experiment and
from one experiment to another in a meaningful way. As we
observed for the histograms, it is possible to distinguish the
ss1 and ss3 distributions from those corresponding to ss2 (see
Fig. 7). This is coherent with the results of previous studies
indicating that distributions are shifting towards higher cluster
sizes when the flow rate is decreased [27,28]. However, the ss1
and ss3 distributions are similar, meaning that the steady-state
nonwetting cluster-size distributions are history independent.
We have checked that whereas varying the threshold values
affects the distributions, typically by shifting them towards
lower or higher cluster sizes, it does not modify the results in
terms of history independence.

The experimental boundary conditions required that the
controlled flow variables were the total flow rate and the
fractional flows. In the next section, we turn to numerical
simulations to further investigate the history dependence of
the steady state for different boundary conditions, as well as
higher Ca values and different viscosity ratios M .

IV. THE NETWORK MODEL

The two-dimensional experimental porous medium is
modeled by a network of tubes oriented at 45◦ with respect
to the overall flow direction. The tubes (or links) intersect
at the vertices (or nodes) of the network with coordination
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Aursjø et al. Simultaneous two-phase flow

FIGURE 2 | For Qtot = 0.3 ml/min and Foil = 1/2, the flow structure is
shown at four different times. The flow direction is from left to right. The
images are ordered, from the top, by increasing time. The images are
respectively captured at 68, 142, 228, and 330 min into the experiment. The
two lower images show flow patterns, at steady state, with a large
separtation in time.

the system. Such an overall static path structure indicates that
the main fluid transport of water-glycerol solution occurs as film
flow in regions where a fluid phase is seemingly disconnected.
This again, implies that even the water-glycerol phase stays
connected.

FIGURE 3 | Time evolution of the dynamics in the invasion structures
in the system. Eight independent experiments with the fractional flow
rates fixed to Foil = 1/2. See Table 2 for total flow rates. The graphs show
percentage change in the pattern configuration between two consecutive
images taken during the experiment, per time. Here !t represents the time
interval between two consecutive images and this differ for experiments
with different flow rates.

3.1. TRANSIENT BEHAVIOR
As described above, almost all observable dynamics in the pat-
tern structure occurs during the initial invasion before the system
reaches a steady/stationary state. In the same manner as Tallakstad
et al. [32], we define a characteristic steady state time tss that
signals the end of the transient regime and the onset of the per-
petual state (see the plot for Foil = 2/3 in Figure 5). Figure 3
accentuates what part of the process displays most of the dynam-
ics. The graph shows how much the pattern configuration has
changed between two consecutive images taken during the exper-
iment. Here a lower threshold value for changes in the gray level
value has been introduced. It is easily seen that the percentage of
change observed in the fluid structure drops rapidly to a negli-
gible level around the time of onset of steady state. This means
that there are no cluster/pattern changes during the last part of
the experiment. Though the experiment with the highest flow
rate demonstrates a similar behavior, the fluid pattern continues
to show changes also after the initial invasion. This means that
there are here some minute cluster dynamics also during steady
state.

Figure 4 shows, on the top left, an image of the invasion pat-
tern at a randomly chosen time during the initial transient state
together with, on the top right, a plot showing the areas where
changes have occurred in the structure since the previous image
in the time series was captured. It is observed that virtually all of
the minute changes that substantiate the dynamics of this system
are located in the vicinity of the invasion front. The lower graph
in Figure 4 shows the average position ⟨y⟩ of the changes observed
in the structure as a function of time. The graph also includes the
standard deviation σy in the position. From this, we see that dur-
ing the initial invasion most of the dynamics or structural changes
occur in a region close to the invasion front. After the onset of
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with different flow rates.

3.1. TRANSIENT BEHAVIOR
As described above, almost all observable dynamics in the pat-
tern structure occurs during the initial invasion before the system
reaches a steady/stationary state. In the same manner as Tallakstad
et al. [32], we define a characteristic steady state time tss that
signals the end of the transient regime and the onset of the per-
petual state (see the plot for Foil = 2/3 in Figure 5). Figure 3
accentuates what part of the process displays most of the dynam-
ics. The graph shows how much the pattern configuration has
changed between two consecutive images taken during the exper-
iment. Here a lower threshold value for changes in the gray level
value has been introduced. It is easily seen that the percentage of
change observed in the fluid structure drops rapidly to a negli-
gible level around the time of onset of steady state. This means
that there are no cluster/pattern changes during the last part of
the experiment. Though the experiment with the highest flow
rate demonstrates a similar behavior, the fluid pattern continues
to show changes also after the initial invasion. This means that
there are here some minute cluster dynamics also during steady
state.

Figure 4 shows, on the top left, an image of the invasion pat-
tern at a randomly chosen time during the initial transient state
together with, on the top right, a plot showing the areas where
changes have occurred in the structure since the previous image
in the time series was captured. It is observed that virtually all of
the minute changes that substantiate the dynamics of this system
are located in the vicinity of the invasion front. The lower graph
in Figure 4 shows the average position ⟨y⟩ of the changes observed
in the structure as a function of time. The graph also includes the
standard deviation σy in the position. From this, we see that dur-
ing the initial invasion most of the dynamics or structural changes
occur in a region close to the invasion front. After the onset of
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At this point, we need to comment on some issues encoun-
tered using this type of model with this fluid pair. During the
initial testing of the experiment, it was observed that the overall
wetting properties of the porous material were strongly depen-
dent on which of the two liquids the model was first exposed to
in its initial “dry” state. By initially filling the “dry” model by
injecting the rapeseed oil into the model, the porous medium
became observably less water wet than in the case where the
water-glycerol solution was used in the initial filling of the “dry”
model. An observable change in the optical properties of the glass
beads in the porous cell between the two situations indicates that
this is due to a thin liquid film coating the beads, originating
from the initial filling of the model. In this paper, we limit our
investigation to the case where the water-glycerol solution coats
the glass beads during the initial filling of the model. Another
effect observed during the initial testing is an ageing effect of
the porous model. This effect is probably also related to wet-
ting effects. While the absolute permeability stayed unchanged
over time, the level of force/pressure needed to drive a two phase
flow, at a given rate, through the model increased over time. This
observation encouraged us to do all the experiments in as short
a time span as possible. And we were able to carry them all out
over a period of 1 week. And to perform them in such an order
so that any potential aging effects would give a contribution to
the uncertainty/noise in the measurements rather than a mono-
tonic drift in them. However, in our results no aging effects were
observed in the time span of the experiments presented in this
paper.

During the experiments the pressure in the water-glycerol
phase is measured at the inlet and at the outlet of the model,
using two SensorTechnics 26PC0100G6G Flow Through pres-
sure sensors. A lightbox illuminates the model from below and
the flow structure is captured at regular intervals using a Nikon
D200 digital SLR camera mounted above the porous medium.
This camera setup produces images of 2592 × 3872 pixels, giving
a spatial resolution of about 9 × 9 pixels per mm2. The images
acquired are cropped to remove boundaries, leaving images of
2208 × 3276 pixels in size to be used in the further image
analysis.

As described earlier, in all the experiments the pore space of
the model is initially occupied by the water-glycerol solution. The
experiment is started by injecting the oil and the water-glycerol
solution simultaneously from every other one of the ten inlet
points on the injection side of the model. The boundary condi-
tion of the injection side may be said to be anti-symmetric around
the center point on the line of inlets. This means that the two
outermost inlets located at opposite ends of the injection bound-
ary, adjacent to the side boundaries, inject opposite fluids. This
results in different boundary effects on the two sides. However,
most of these boundary effects are not taken into account in
the image analysis, due to the cropping of the images described
above.

The oil and the water-glycerol solution are injected from indi-
vidual syringes connected to the individual inlet points. The five
oil filled syringes and the five water-glycerol filled syringes are
connected to two separate WPI ALADDIN6-220 syringe pumps
that handle five syringes each. Having two separate pumps, one

for each fluid phase, allows us to set different injection rates for
the two phases.

3. RESULTS
We choose to define a capillary number of the flow on pore scale,
using Darcy’s law, as

Ca = (!p)viscous

(!p)capillary
= µQtotb2

γ κ0A
, (1)

where µ = (µw + µoil)/2 is an average of the two viscosities,
A = Wb is the cross-sectional area, and the total injection rate

Q tot = Q w + Q oil = 5Q 0w + 5Q 0oil. (2)

Here Q0w and Q0oil are respectively the injection rates of the
individual water-glycerol solution filled syringes and oil-filled
syringes. In our experiments only the individual flow rates have
been varied in order to vary the capillary number. All other
parameters have been kept constant. Table 2 shows the 8 differ-
ent total flow rates we probed in our experiments, along with the
corresponding legend numbers in the following graphs.

We may define an oil fractional flow rate Foil = Qoil/Qtot . For
each total flow rate Qtot , we carried out a set of three indepen-
dent experiments where the oil fractional flow rates were put to
Foil = 1/3, 1/2, or 2/3.

The rapeseed oil initially enters the porous matrix to form
individual fingers originating from oil inlet points. As the inva-
sion structure evolves, these fingers are observed to merge with
one another to form a connected invasion front. The time evo-
lution of the flow pattern for a typical experiment is shown in
Figure 2. Contrary to what is found in equivalent experiments
with air and a water-glycerol solution as the two fluid phases
[32], the invading non-wetting phase stays connected to the inlets
through the whole of the invasion process. As the initial oil fin-
gers merge, the water-glycerol phase is seemingly fragmented into
disconnected clusters. However, it is observed that these clusters
are overall left static in a fixed cluster configuration behind the
front. A comparison of the two lower images in Figure 2, read-
ily demonstrates this characteristic behavior of the fluid paths in

Table 2 | Total flow rates Qtot and capillary numbers Ca corresponding
to the legend numbers presented in the forthcoming graphs.

Legend no. Qtot [ml/min] Ca

1 0.30 0.0241
2 0.45 0.0362
3 0.60 0.0482
4 0.90 0.0723
5 1.2 0.0964
6 1.8 0.145
7 2.4 0.193
8 3.6 0.289

For each total flow rate Qtot , three independent experiments were executed,
where the oil fractional flow rates were put to Foil = 1/3, 1/2, or 2/3.
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FIGURE 4 | (A) For Qtot = 1.2 ml/min and Foil = 1/2, the invasion pattern at
a chosen time during the initial transient state is shown on the left. Here,
the flow direction is from the bottom to the top. On the right, the
corresponding changes that have occured in the structure since the
previous image in the time series, is shown. Here, the areas that are
changed are marked as white, while the unchanged areas are black. (B) The
mean position ⟨y⟩ of the changes, from the bottom end of the image (inlet
side), is given as a function of the time relative to the steady-state time tss,
accompanied by the standard deviation σy in the position of changed
points.

steady-state, where we have seen in Figure 4 that any dynam-
ics has virtually vanished, the standard deviation σy shown in
Figure 4 tends to increase. The few changes occuring are, i.e., not
found in a localized area, but are rather scattered over more of the
system.

3.2. STATIONARY STATE
As the system leaves the initial state of invasion and enters the per-
petual stationary state of the system, the pressure difference across
the model, which has been increasing steadily from the onset of
invasion, levels off at a constant value (See Figure 5). In the same
manner as described by Tallakstad et al. [32], the stationary state
may globally be quantized by the pressure drop between the inlet
and the outlet,

FIGURE 5 | Time evolution of the pressure difference across the length
of the model for all the experiments. Results for each given fractional oil
flow rate, Foil, are here plotted together. See Table 2 for total flow rates for
the individual experiments. (The undulations in the pressure plots are an
unwanted signature of one of the syringe pumps used).

"Pss = 1

tend − tss

∫ tend

tss

"P(t)dt, (3)

where tend is the end time of the experiment. In Figure 6 the aver-
age steady-state pressure differences are plotted as a function of
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III. RESULTS AND DISCUSSIONS

A. Film flow drainage

We have observed that some of the cluster drainage
events were happening for clusters completely sur-
rounded by pores invaded by the air phase. Given that
the liquid in the clusters is essentially incompressible, the
only possible explanation for this kind of drainage is film
flow, i.e., instead of flowing through the bulk of the pores
and pore-throats (following the standard drainage mech-
anisms for incompressible fluids), the flow was happen-
ing through the inner surfaces of the porous medium and
through a set of interconnected capillary bridges. Fig. 3
shows this kind of behavior. The liquid cluster in the
center of panel I is completely surrounded by air-filled
pores and, therefore, would be trapped if only the stan-
dard mechanism of drainage would apply. Nevertheless,
as times passes by, we notice that the cluster reduces
(panel II) and disappears almost completely (panel III).
The explanation for that behavior is film flow, as can be
seen in the zoomed in inset of panel I, shown on the left.
We have marked with green arrows some of the capillary
bridges that form a continuous connection (blue line) be-
tween that liquid cluster and another one in the bottom
of the image (which could either be the defending liquid
cluster connected to the outlet of the model or another
intermediate liquid cluster). The formation of capillary
bridges thus introduces an additional flow mechanism,
which enhances the total connectivity of the medium and
allows for the drainage of seemingly trapped regions.
The formation of capillary bridges is not a sporadic

event and, depending on the properties of the fluids in-
volved and on the morphology of the porous medium,
they can play a crucial effect in flow phenomena in porous
networks. We have employed the capillary bridges track-
ing algorithm presented in Sec. II C to directly visual-
ize the enhanced connectivity introduced by the capil-
lary bridges in the porous medium. Fig. 4 shows the re-
sult of such tracking applied to a portion of the medium.
We have drawn red lines connecting the centers of beads
which happen to be linked through a capillary bridge
(marked with a small red star in the middle of each line
segment). We denote C0 the defending liquid cluster,
connected to the outlet of the model flow which the liq-
uid is withdrawn. Although being apparently trapped by
the air phase, the cluster C2 is still connected to C0 (and
thus to the outlet of the system) via the capillary bridges
pathway denoted b2 (in yellow in the figure). Therefore,
the liquid in C2 can still be withdrawn. Similarly, the
cluster C1 can be withdrawn through the pathway b1
into C2 and then through b2 into C0. The kind of mecha-
nism just described introduces the possibility of drainage
of pores that lie far away from the boundary of the de-
fending cluster. The typical distance for this film flow
drainage to occur depends on the probability of having
a continuous pathway of bridges and liquid filled pores
connecting the particular pore in question to the bound-
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FIG. 3. Sequence of images showing the drainage of a sup-
posedly trapped liquid cluster. The average flow direction is
from top to bottom and the system is inclined by 20◦, thus
yielding a vertical component of the acceleration of gravity
gy as shown. The time difference between frames I and III is
≈ 10h. The zoomed inset on the left shows the path of in-
terconnected capillary bridges through which film flow takes
place (some of the bridges are marked by green arrows).

ary of the defending cluster C0. This distance sets in
a characteristic length scale for the film flow dynamics,
and is a function of the pore geometry and of possible
capillary bridge snapping off mechanisms (which can be
influenced by gravitational effects).

B. Film flow active zone

We have observed the existence of an active zone in
which film flow phenomena is more likely to occur. This
zone is concentrated behind the invasion front and seems
to follow the motion of the front itself. Fig. 5 shows three
frames from an experiment made with a 20◦ inclination.
The time difference between the first and second or sec-
ond and third frames is ≈ 24h. We have marked in red
the contours of pores invaded due to film flow between
one frame and another one ≈ 2h earlier. As can be seen,
there seems to be an active zone following the interface
between the non-wetting phase and the main defending
wetting cluster (the external perimeter of the air cluster).
Film flow invasion far from this zone can also happen, but
is much less likely. This zone is better defined for inva-
sions happening at higher angles getting fuzzier as the

Film	  flow	  	  and	  	  capillary	  bridges	  

Experiment	  by	  	  
Marcel	  Moura	  
	  
Monem	  Ayaz	  
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FIGURE 6 | Average steady-state pressure difference !Pss as a function
of the total flow rate Qtot .

the capillary number for the three different oil fractional flow
rates investigated. We observe that !Pss potentially exhibits the
behavior of a power law in the total flow rate Qtot ,

!Pss ∼ Qβ
tot, (4)

with exponents β1/2, 2/3 = 0.67 ± 0.05 for Foil = 1/2 and 2/3,
and debatably a higher β1/3 = 0.74 ± 0.05 for Foil = 1/3. Here
the errors are obtained from the estimated limits of power laws
fitted to the data sets. The values for β found here are higher
than the exponent value reported by Tallakstad et al. [32] in a
system with a large viscosity difference between the two fluids.
As described in the previous section the overall cluster configu-
ration is left static after onset of the perpetual state. Only minute
changes may be detected (See Figures 3, 4 for t/tss > 1). And as
already stated in the beginning of this section, this indicates that
both fluids flow in connected pathways from inlet to outlet. The
fact that both fluids must to some extent be flowing side by side,
is in agreement with the higher power law exponents observed
above. In a pure Darcy type flow, the pressure difference across
the model increases linearly with the applied flow rate. In our
system this would correspond to a power exponent β = 1. The
more the dynamics of the flow involves fluid interface dynam-
ics, the more the flow behavior will deviate from a Darcy flow
behavior. Tallakstad et al. [32] reported a more stable migration of
independent air clusters through the system in the perpetual state.
This corresponds to a larger degree of dynamics due to move-
ment of fluid interfaces than what is observed in the stationary
perpetual state of our system. This is in agreement with a larger
divergence away from a pure Darcy type flow.

Figure 7 shows the steady-state two-phase-flow structure for
a selection of separate experiments. With regards to the pos-
sible difference observed in the power law exponent between
Foil = 1/3 and the other two oil fractional flow rates, there is from
Figure 7 observably a higher degree of water-glycerol channel
flow in the Foil = 1/3 experiments. This is especially prominent
comparing the three rightmost images in Figure 7. There is also

less interface dynamics in the experiments where Foil = 1/3. This
is in agreement with a higher value for β, a value approaching 1.

In a perfect two dimensional geometry, where the pore space
is connected and therefore, by necessity, the solid structure is
disconnected, having both phases flow in connected structures
would only be possible if the two fluids flow in channels alongside
each other, unsupported by film flow along the solids. From the
2D projection of our system, we observe that the water-glycerol
phase appears as static disconnected clusters. This means that at
least the water-glycerol phase must in some regions of the system
be flowing as out-of-plane film flow. Thus, we have flow dynamics
dominated by three-dimensional effects.

3.3. WATER-GLYCEROL CLUSTER SIZE DISTRIBUTIONS
After the systems have reached their stationary state, we have
extracted the size distributions of the seemingly disconnected
water-glycerol clusters stuck in the porous medium. It should be
pointed out that these distributions cannot be directly compared
to those found by Tallakstad et al. [32]. In their investigation, it
was the distribution of clusters of air, and not water-glycerol, that
was analyzed. To minimize boundary effects in the distributions
extracted, all clusters connected to the boundaries of the images
used, have been removed in the analysis process. The normalized
probability density functions (PDF) P(s) for all total and frac-
tional flow rates probed are presented in Figure 8. We have here,
as in percolation theory [36], assumed that the normalized cluster
size distribution behaves as a PDF

P(s) ∝ s−τ exp ( − s/s∗), (5)

where s∗ is a statistical cutoff cluster size. Using a proportional-
ity constant, τ , and s∗ as our three fit parameters, we have fitted
this function to the data for each individual experiment. Due to
the lack of statistics for the largest clusters of the systems, we have
in the fitting procedure disregarded the data from these. For each
fractional flow rate, by averaging the fitted τ exponents for the
8 individual total flow rates (given in Table 2), it is found that
τ2/3 = 1.37 ± 0.09, τ1/2 = 1.43 ± 0.06, and τ1/3 = 1.48 ± 0.04,
for Foil = 2/3, 1/2, and 1/3, respectively. Here, the uncertainties
only reflect the differences in the exponents fitted to each individ-
ual distribution. Along with the fitted values of s∗, these average
values for τ were used to produce the data collapses shown in
Figure 8. From this figure, we observe that the cluster size dis-
tributions exhibit a power law behavior over more than three
decades.

With regards to the cutoff cluster size, the fitted values of s∗ are
observed to potentially scale with the total flow rate Qtot as

s∗ ∝ Q−ζ
tot . (6)

Figure 9 shows s∗ for the three fractional flow rates as functions of
the the total flow rate Qtot . By fitting the proposed function above
to these sets of s∗, having the proportionality constant and ζ as fit
parameters, we find that ζ2/3 = 0.89 ± 0.08, ζ1/2 = 0.67 ± 0.05,
and ζ1/3 = 0.51 ± 0.05, for Foil = 2/3, 1/2, and 1/3, respectively.
Here, the errors correspond to the standard deviations from
the fitting procedure. From this, we see a trend of possibly
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fact that both fluids must to some extent be flowing side by side,
is in agreement with the higher power law exponents observed
above. In a pure Darcy type flow, the pressure difference across
the model increases linearly with the applied flow rate. In our
system this would correspond to a power exponent β = 1. The
more the dynamics of the flow involves fluid interface dynam-
ics, the more the flow behavior will deviate from a Darcy flow
behavior. Tallakstad et al. [32] reported a more stable migration of
independent air clusters through the system in the perpetual state.
This corresponds to a larger degree of dynamics due to move-
ment of fluid interfaces than what is observed in the stationary
perpetual state of our system. This is in agreement with a larger
divergence away from a pure Darcy type flow.

Figure 7 shows the steady-state two-phase-flow structure for
a selection of separate experiments. With regards to the pos-
sible difference observed in the power law exponent between
Foil = 1/3 and the other two oil fractional flow rates, there is from
Figure 7 observably a higher degree of water-glycerol channel
flow in the Foil = 1/3 experiments. This is especially prominent
comparing the three rightmost images in Figure 7. There is also

less interface dynamics in the experiments where Foil = 1/3. This
is in agreement with a higher value for β, a value approaching 1.

In a perfect two dimensional geometry, where the pore space
is connected and therefore, by necessity, the solid structure is
disconnected, having both phases flow in connected structures
would only be possible if the two fluids flow in channels alongside
each other, unsupported by film flow along the solids. From the
2D projection of our system, we observe that the water-glycerol
phase appears as static disconnected clusters. This means that at
least the water-glycerol phase must in some regions of the system
be flowing as out-of-plane film flow. Thus, we have flow dynamics
dominated by three-dimensional effects.

3.3. WATER-GLYCEROL CLUSTER SIZE DISTRIBUTIONS
After the systems have reached their stationary state, we have
extracted the size distributions of the seemingly disconnected
water-glycerol clusters stuck in the porous medium. It should be
pointed out that these distributions cannot be directly compared
to those found by Tallakstad et al. [32]. In their investigation, it
was the distribution of clusters of air, and not water-glycerol, that
was analyzed. To minimize boundary effects in the distributions
extracted, all clusters connected to the boundaries of the images
used, have been removed in the analysis process. The normalized
probability density functions (PDF) P(s) for all total and frac-
tional flow rates probed are presented in Figure 8. We have here,
as in percolation theory [36], assumed that the normalized cluster
size distribution behaves as a PDF

P(s) ∝ s−τ exp ( − s/s∗), (5)

where s∗ is a statistical cutoff cluster size. Using a proportional-
ity constant, τ , and s∗ as our three fit parameters, we have fitted
this function to the data for each individual experiment. Due to
the lack of statistics for the largest clusters of the systems, we have
in the fitting procedure disregarded the data from these. For each
fractional flow rate, by averaging the fitted τ exponents for the
8 individual total flow rates (given in Table 2), it is found that
τ2/3 = 1.37 ± 0.09, τ1/2 = 1.43 ± 0.06, and τ1/3 = 1.48 ± 0.04,
for Foil = 2/3, 1/2, and 1/3, respectively. Here, the uncertainties
only reflect the differences in the exponents fitted to each individ-
ual distribution. Along with the fitted values of s∗, these average
values for τ were used to produce the data collapses shown in
Figure 8. From this figure, we observe that the cluster size dis-
tributions exhibit a power law behavior over more than three
decades.

With regards to the cutoff cluster size, the fitted values of s∗ are
observed to potentially scale with the total flow rate Qtot as

s∗ ∝ Q−ζ
tot . (6)

Figure 9 shows s∗ for the three fractional flow rates as functions of
the the total flow rate Qtot . By fitting the proposed function above
to these sets of s∗, having the proportionality constant and ζ as fit
parameters, we find that ζ2/3 = 0.89 ± 0.08, ζ1/2 = 0.67 ± 0.05,
and ζ1/3 = 0.51 ± 0.05, for Foil = 2/3, 1/2, and 1/3, respectively.
Here, the errors correspond to the standard deviations from
the fitting procedure. From this, we see a trend of possibly
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FIGURE 6 | Average steady-state pressure difference !Pss as a function
of the total flow rate Qtot .

the capillary number for the three different oil fractional flow
rates investigated. We observe that !Pss potentially exhibits the
behavior of a power law in the total flow rate Qtot ,

!Pss ∼ Qβ
tot, (4)

with exponents β1/2, 2/3 = 0.67 ± 0.05 for Foil = 1/2 and 2/3,
and debatably a higher β1/3 = 0.74 ± 0.05 for Foil = 1/3. Here
the errors are obtained from the estimated limits of power laws
fitted to the data sets. The values for β found here are higher
than the exponent value reported by Tallakstad et al. [32] in a
system with a large viscosity difference between the two fluids.
As described in the previous section the overall cluster configu-
ration is left static after onset of the perpetual state. Only minute
changes may be detected (See Figures 3, 4 for t/tss > 1). And as
already stated in the beginning of this section, this indicates that
both fluids flow in connected pathways from inlet to outlet. The
fact that both fluids must to some extent be flowing side by side,
is in agreement with the higher power law exponents observed
above. In a pure Darcy type flow, the pressure difference across
the model increases linearly with the applied flow rate. In our
system this would correspond to a power exponent β = 1. The
more the dynamics of the flow involves fluid interface dynam-
ics, the more the flow behavior will deviate from a Darcy flow
behavior. Tallakstad et al. [32] reported a more stable migration of
independent air clusters through the system in the perpetual state.
This corresponds to a larger degree of dynamics due to move-
ment of fluid interfaces than what is observed in the stationary
perpetual state of our system. This is in agreement with a larger
divergence away from a pure Darcy type flow.

Figure 7 shows the steady-state two-phase-flow structure for
a selection of separate experiments. With regards to the pos-
sible difference observed in the power law exponent between
Foil = 1/3 and the other two oil fractional flow rates, there is from
Figure 7 observably a higher degree of water-glycerol channel
flow in the Foil = 1/3 experiments. This is especially prominent
comparing the three rightmost images in Figure 7. There is also

less interface dynamics in the experiments where Foil = 1/3. This
is in agreement with a higher value for β, a value approaching 1.

In a perfect two dimensional geometry, where the pore space
is connected and therefore, by necessity, the solid structure is
disconnected, having both phases flow in connected structures
would only be possible if the two fluids flow in channels alongside
each other, unsupported by film flow along the solids. From the
2D projection of our system, we observe that the water-glycerol
phase appears as static disconnected clusters. This means that at
least the water-glycerol phase must in some regions of the system
be flowing as out-of-plane film flow. Thus, we have flow dynamics
dominated by three-dimensional effects.

3.3. WATER-GLYCEROL CLUSTER SIZE DISTRIBUTIONS
After the systems have reached their stationary state, we have
extracted the size distributions of the seemingly disconnected
water-glycerol clusters stuck in the porous medium. It should be
pointed out that these distributions cannot be directly compared
to those found by Tallakstad et al. [32]. In their investigation, it
was the distribution of clusters of air, and not water-glycerol, that
was analyzed. To minimize boundary effects in the distributions
extracted, all clusters connected to the boundaries of the images
used, have been removed in the analysis process. The normalized
probability density functions (PDF) P(s) for all total and frac-
tional flow rates probed are presented in Figure 8. We have here,
as in percolation theory [36], assumed that the normalized cluster
size distribution behaves as a PDF

P(s) ∝ s−τ exp ( − s/s∗), (5)

where s∗ is a statistical cutoff cluster size. Using a proportional-
ity constant, τ , and s∗ as our three fit parameters, we have fitted
this function to the data for each individual experiment. Due to
the lack of statistics for the largest clusters of the systems, we have
in the fitting procedure disregarded the data from these. For each
fractional flow rate, by averaging the fitted τ exponents for the
8 individual total flow rates (given in Table 2), it is found that
τ2/3 = 1.37 ± 0.09, τ1/2 = 1.43 ± 0.06, and τ1/3 = 1.48 ± 0.04,
for Foil = 2/3, 1/2, and 1/3, respectively. Here, the uncertainties
only reflect the differences in the exponents fitted to each individ-
ual distribution. Along with the fitted values of s∗, these average
values for τ were used to produce the data collapses shown in
Figure 8. From this figure, we observe that the cluster size dis-
tributions exhibit a power law behavior over more than three
decades.

With regards to the cutoff cluster size, the fitted values of s∗ are
observed to potentially scale with the total flow rate Qtot as

s∗ ∝ Q−ζ
tot . (6)

Figure 9 shows s∗ for the three fractional flow rates as functions of
the the total flow rate Qtot . By fitting the proposed function above
to these sets of s∗, having the proportionality constant and ζ as fit
parameters, we find that ζ2/3 = 0.89 ± 0.08, ζ1/2 = 0.67 ± 0.05,
and ζ1/3 = 0.51 ± 0.05, for Foil = 2/3, 1/2, and 1/3, respectively.
Here, the errors correspond to the standard deviations from
the fitting procedure. From this, we see a trend of possibly
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FIGURE 8 | Data collapse of the water-glycrol cluster size distributions
for all the experiments. The plots are grouped by fractional oil flow rate
Foil. For each fractional flow rate, the distributions for the different Qtot are
represented by differently shaped symbols. (See Table 2 for the
corresponding total flow rates.) The data sets showing the cluster size
distributions obtained for Foil = 1/2 have in this graph been shifted along
the vertical axis by a factor of 10−2, while the distributions obtained for
Foil = 1/2 have been shifted by a factor of 10−4. To produce the data
collapses the fitted values of s∗ for each individual data set have been used,
along with the average values for τ1/3 = 1.48, τ1/2 = 1.43, and τ1/3 = 1.37,
for the respective fractional oil flow rates. The same values for τ were used
to produce the black dotted lines which are proportional to
(s/s∗)−τ exp (s/s∗).

FIGURE 9 | The fitted values of the cutoff cluster size s∗ for the three
fractional oil flow Foil are plotted as functions of the total flow rate
Qtot . The solid lines show the fitted functions proportional to Q−ζ

tot , where
ζ2/3 = 0.89, ζ1/2 = 0.67, and ζ1/3 = 0.51 have been used for Foil = 2/3,
1/2, and 1/3, respectively.

For most of the flow rates probed, the system behavior is
observed to be dominated by the transient state dynamics. The
transient state, characterized by the propagation of an invasion
front, typically exhibits cluster dynamics strongly restricted to an

area close to the moving invasion front. We observe that water-
glycerol clusters, that are left behind by the invasion front, to a
large degree stay static after they are visually disconnected from
the front. This leaves the system in a perpetual stationary state. As
the front propagates through the system, the pressure drop over
the model, from the inlet to the outlet, is observed to increase
until it levels off to a constant value in the perpetual state. It was
observed that this pressure difference potentially increases as a
power law with an increase in the flow rates applied. The power
law exponents β extracted for the different fractional flow rates
are found to be higher than what was observed by Tallakstad et al.
[32, 33]. This may be put in connection with having less cluster
and interface dynamics in our system.

In the stationary state, the cluster size distribution of the static
water-glycerol clusters were extracted. These distributions fol-
lowed a power law with a cutoff for large cluster sizes. By fitting
a power law with an exponential tail to the data set there were
indications that the power law exponent could be weakly depen-
dent of the fractional oil flow rate. The data could indicate a trend
where a larger fractional oil flow rate would give a slightly lower
power law exponent τ than for smaller fractional oil flow rates.
But these findings are not conclusive. The cutoff cluster sizes s∗

extracted from the cluster size distributions, however, were found
to be more strongly dependent on the fractional oil flow rate.
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Foil. For each fractional flow rate, the distributions for the different Qtot are
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collapses the fitted values of s∗ for each individual data set have been used,
along with the average values for τ1/3 = 1.48, τ1/2 = 1.43, and τ1/3 = 1.37,
for the respective fractional oil flow rates. The same values for τ were used
to produce the black dotted lines which are proportional to
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tot , where
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transient state, characterized by the propagation of an invasion
front, typically exhibits cluster dynamics strongly restricted to an

area close to the moving invasion front. We observe that water-
glycerol clusters, that are left behind by the invasion front, to a
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law exponents β extracted for the different fractional flow rates
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[32, 33]. This may be put in connection with having less cluster
and interface dynamics in our system.

In the stationary state, the cluster size distribution of the static
water-glycerol clusters were extracted. These distributions fol-
lowed a power law with a cutoff for large cluster sizes. By fitting
a power law with an exponential tail to the data set there were
indications that the power law exponent could be weakly depen-
dent of the fractional oil flow rate. The data could indicate a trend
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little previous results exists, makes it difficult to say whether
this is intuitively correct. Numerical studies have sought af-
ter relations between saturation and other flow properties
!33,34". However, another factor, to be discussed in Sec.
III D, are possible compressibility effects. It is a priori not
clear that the saturation would be the same if the air were
incompressible. This is an issue that we will pursue in further
studies.

Figure 7#a$ shows the mean steady-state pressure differ-
ence !Pss as a function of the capillary number Ca. The
pressure fluctuations are small as shown in the pressure dis-
tributions PDF#!P−!Pss$ in the inset of Fig. 7#a$. For all
experiments the standard deviation in !Pss is on the order of
1 kPa. It is evident that !Pss follows a power law in Ca,

!Pss " Ca#, #3$

with the exponent

# = 0.54 $ 0.08. #4$

This behavior is by no means obvious !36", and we will
return to a physical interpretation and quantitative derivation
of this result in Sec. III C.

C. Cluster size distributions

After the systems have entered into steady state, we have
analyzed images of the structure in order to determine the
size distribution of nonwetting clusters or bubbles. The nor-
malized probability density function #PDF$ p#s$ as a function
of cluster size s for all Ca numbers investigated is shown in
Fig. 8#a$. A trivial observation is the decrease in probability
with increasing cluster size. Less obvious is the fact that the
curves show an exponential-like cutoff depending on the
capillary number. Additionally there is a cutoff region for
smaller clusters, as the cluster size approaches the bead size.
Since the beads are counted as part of the clusters during
image analysis, we have no information at this size scale. For
the highest Ca numbers, the whole distribution is dominated
by the exponential cutoff. However, as the Ca number is
decreased, a small region of power-law-like behavior is ob-
served in between the two cutoffs.

Analogously to what is done in percolation theory !37",
we assume that the distribution of the clusters follows the
PDF,

p#s$ " s−% exp#− s/s!$ , #5$

where s! is the cutoff cluster size. The latter function has
been fitted, using a proportionality constant % and s! as fit
parameters, to the experimental data for each Ca number.
This is shown by the solid lines in Fig. 8#a$. By averaging
the fitted % exponents it is found that %=2.07$0.18. The
uncertainty only reflects the difference in fitted exponents.
From the distributions it is seen that no power-law region is
well pronounced, and we do not claim that % is determined
with a large degree of certainty in this case. When it comes
to the cutoff cluster size, the fitted values of s! are found to
scale with Ca !Eq. #1$" as

s! " Ca−&, #6$

where &=0.98$0.07. This is shown in the inset of Fig. 8#b$.
One should note, even for the lowest Ca number, that s!

%105 pixels is considerably smaller than the system size
%107 pixels, meaning that large-scale finite-size effects
should not be of importance. Equation #5$ predicts a rescal-
ing of the horizontal and the vertical axes with 1 /s! and s!%,
respectively. On this basis the data collapse in Fig. 8#b$ is
obtained.

From the above considerations, the cluster size PDF of
nonwetting clusters in steady state obeys the scaling function

p#s$ " s!−%H#s/s!$ , #7$

where H#x$ contains an exponential cutoff !Eq. #5$", so that
p#s$→0 when x'1.

Up to now the cluster size measured in area was studied.
One step further is to consider the linear extension of the
clusters in the two directions: lx transverse to the overall
direction of flow and ly oriented along the overall direction
of flow. This is achieved by assigning a bounding box of
sides lx and ly to a cluster of size s, i.e., the smallest rectangle
that can contain the cluster. In the following, li, where i
! &x ,y', will denote both the lx and the ly extensions. It is
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FIG. 8. #Color online$ Nonwetting cluster size PDF p#s$ in
steady state for all experiments. The cluster size s is measured in
pixels; 1 pixel=0.037 mm2. #a$ Normalized probability distribu-
tions. The dominating cutoff behavior is evident. The solid lines
represent fits of Eq. #5$. #b$ The horizontal and the vertical axes are
rescaled with 1 /s! and s!%, respectively, to obtain the data collapse.
The Ca dependence of the cutoff cluster size s! is shown in the
inset.
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FIGURE 6 | Average steady-state pressure difference !Pss as a function
of the total flow rate Qtot .

the capillary number for the three different oil fractional flow
rates investigated. We observe that !Pss potentially exhibits the
behavior of a power law in the total flow rate Qtot ,

!Pss ∼ Qβ
tot, (4)

with exponents β1/2, 2/3 = 0.67 ± 0.05 for Foil = 1/2 and 2/3,
and debatably a higher β1/3 = 0.74 ± 0.05 for Foil = 1/3. Here
the errors are obtained from the estimated limits of power laws
fitted to the data sets. The values for β found here are higher
than the exponent value reported by Tallakstad et al. [32] in a
system with a large viscosity difference between the two fluids.
As described in the previous section the overall cluster configu-
ration is left static after onset of the perpetual state. Only minute
changes may be detected (See Figures 3, 4 for t/tss > 1). And as
already stated in the beginning of this section, this indicates that
both fluids flow in connected pathways from inlet to outlet. The
fact that both fluids must to some extent be flowing side by side,
is in agreement with the higher power law exponents observed
above. In a pure Darcy type flow, the pressure difference across
the model increases linearly with the applied flow rate. In our
system this would correspond to a power exponent β = 1. The
more the dynamics of the flow involves fluid interface dynam-
ics, the more the flow behavior will deviate from a Darcy flow
behavior. Tallakstad et al. [32] reported a more stable migration of
independent air clusters through the system in the perpetual state.
This corresponds to a larger degree of dynamics due to move-
ment of fluid interfaces than what is observed in the stationary
perpetual state of our system. This is in agreement with a larger
divergence away from a pure Darcy type flow.

Figure 7 shows the steady-state two-phase-flow structure for
a selection of separate experiments. With regards to the pos-
sible difference observed in the power law exponent between
Foil = 1/3 and the other two oil fractional flow rates, there is from
Figure 7 observably a higher degree of water-glycerol channel
flow in the Foil = 1/3 experiments. This is especially prominent
comparing the three rightmost images in Figure 7. There is also

less interface dynamics in the experiments where Foil = 1/3. This
is in agreement with a higher value for β, a value approaching 1.

In a perfect two dimensional geometry, where the pore space
is connected and therefore, by necessity, the solid structure is
disconnected, having both phases flow in connected structures
would only be possible if the two fluids flow in channels alongside
each other, unsupported by film flow along the solids. From the
2D projection of our system, we observe that the water-glycerol
phase appears as static disconnected clusters. This means that at
least the water-glycerol phase must in some regions of the system
be flowing as out-of-plane film flow. Thus, we have flow dynamics
dominated by three-dimensional effects.

3.3. WATER-GLYCEROL CLUSTER SIZE DISTRIBUTIONS
After the systems have reached their stationary state, we have
extracted the size distributions of the seemingly disconnected
water-glycerol clusters stuck in the porous medium. It should be
pointed out that these distributions cannot be directly compared
to those found by Tallakstad et al. [32]. In their investigation, it
was the distribution of clusters of air, and not water-glycerol, that
was analyzed. To minimize boundary effects in the distributions
extracted, all clusters connected to the boundaries of the images
used, have been removed in the analysis process. The normalized
probability density functions (PDF) P(s) for all total and frac-
tional flow rates probed are presented in Figure 8. We have here,
as in percolation theory [36], assumed that the normalized cluster
size distribution behaves as a PDF

P(s) ∝ s−τ exp ( − s/s∗), (5)

where s∗ is a statistical cutoff cluster size. Using a proportional-
ity constant, τ , and s∗ as our three fit parameters, we have fitted
this function to the data for each individual experiment. Due to
the lack of statistics for the largest clusters of the systems, we have
in the fitting procedure disregarded the data from these. For each
fractional flow rate, by averaging the fitted τ exponents for the
8 individual total flow rates (given in Table 2), it is found that
τ2/3 = 1.37 ± 0.09, τ1/2 = 1.43 ± 0.06, and τ1/3 = 1.48 ± 0.04,
for Foil = 2/3, 1/2, and 1/3, respectively. Here, the uncertainties
only reflect the differences in the exponents fitted to each individ-
ual distribution. Along with the fitted values of s∗, these average
values for τ were used to produce the data collapses shown in
Figure 8. From this figure, we observe that the cluster size dis-
tributions exhibit a power law behavior over more than three
decades.

With regards to the cutoff cluster size, the fitted values of s∗ are
observed to potentially scale with the total flow rate Qtot as

s∗ ∝ Q−ζ
tot . (6)

Figure 9 shows s∗ for the three fractional flow rates as functions of
the the total flow rate Qtot . By fitting the proposed function above
to these sets of s∗, having the proportionality constant and ζ as fit
parameters, we find that ζ2/3 = 0.89 ± 0.08, ζ1/2 = 0.67 ± 0.05,
and ζ1/3 = 0.51 ± 0.05, for Foil = 2/3, 1/2, and 1/3, respectively.
Here, the errors correspond to the standard deviations from
the fitting procedure. From this, we see a trend of possibly
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the capillary number for the three different oil fractional flow
rates investigated. We observe that !Pss potentially exhibits the
behavior of a power law in the total flow rate Qtot ,

!Pss ∼ Qβ
tot, (4)

with exponents β1/2, 2/3 = 0.67 ± 0.05 for Foil = 1/2 and 2/3,
and debatably a higher β1/3 = 0.74 ± 0.05 for Foil = 1/3. Here
the errors are obtained from the estimated limits of power laws
fitted to the data sets. The values for β found here are higher
than the exponent value reported by Tallakstad et al. [32] in a
system with a large viscosity difference between the two fluids.
As described in the previous section the overall cluster configu-
ration is left static after onset of the perpetual state. Only minute
changes may be detected (See Figures 3, 4 for t/tss > 1). And as
already stated in the beginning of this section, this indicates that
both fluids flow in connected pathways from inlet to outlet. The
fact that both fluids must to some extent be flowing side by side,
is in agreement with the higher power law exponents observed
above. In a pure Darcy type flow, the pressure difference across
the model increases linearly with the applied flow rate. In our
system this would correspond to a power exponent β = 1. The
more the dynamics of the flow involves fluid interface dynam-
ics, the more the flow behavior will deviate from a Darcy flow
behavior. Tallakstad et al. [32] reported a more stable migration of
independent air clusters through the system in the perpetual state.
This corresponds to a larger degree of dynamics due to move-
ment of fluid interfaces than what is observed in the stationary
perpetual state of our system. This is in agreement with a larger
divergence away from a pure Darcy type flow.

Figure 7 shows the steady-state two-phase-flow structure for
a selection of separate experiments. With regards to the pos-
sible difference observed in the power law exponent between
Foil = 1/3 and the other two oil fractional flow rates, there is from
Figure 7 observably a higher degree of water-glycerol channel
flow in the Foil = 1/3 experiments. This is especially prominent
comparing the three rightmost images in Figure 7. There is also

less interface dynamics in the experiments where Foil = 1/3. This
is in agreement with a higher value for β, a value approaching 1.

In a perfect two dimensional geometry, where the pore space
is connected and therefore, by necessity, the solid structure is
disconnected, having both phases flow in connected structures
would only be possible if the two fluids flow in channels alongside
each other, unsupported by film flow along the solids. From the
2D projection of our system, we observe that the water-glycerol
phase appears as static disconnected clusters. This means that at
least the water-glycerol phase must in some regions of the system
be flowing as out-of-plane film flow. Thus, we have flow dynamics
dominated by three-dimensional effects.

3.3. WATER-GLYCEROL CLUSTER SIZE DISTRIBUTIONS
After the systems have reached their stationary state, we have
extracted the size distributions of the seemingly disconnected
water-glycerol clusters stuck in the porous medium. It should be
pointed out that these distributions cannot be directly compared
to those found by Tallakstad et al. [32]. In their investigation, it
was the distribution of clusters of air, and not water-glycerol, that
was analyzed. To minimize boundary effects in the distributions
extracted, all clusters connected to the boundaries of the images
used, have been removed in the analysis process. The normalized
probability density functions (PDF) P(s) for all total and frac-
tional flow rates probed are presented in Figure 8. We have here,
as in percolation theory [36], assumed that the normalized cluster
size distribution behaves as a PDF

P(s) ∝ s−τ exp ( − s/s∗), (5)

where s∗ is a statistical cutoff cluster size. Using a proportional-
ity constant, τ , and s∗ as our three fit parameters, we have fitted
this function to the data for each individual experiment. Due to
the lack of statistics for the largest clusters of the systems, we have
in the fitting procedure disregarded the data from these. For each
fractional flow rate, by averaging the fitted τ exponents for the
8 individual total flow rates (given in Table 2), it is found that
τ2/3 = 1.37 ± 0.09, τ1/2 = 1.43 ± 0.06, and τ1/3 = 1.48 ± 0.04,
for Foil = 2/3, 1/2, and 1/3, respectively. Here, the uncertainties
only reflect the differences in the exponents fitted to each individ-
ual distribution. Along with the fitted values of s∗, these average
values for τ were used to produce the data collapses shown in
Figure 8. From this figure, we observe that the cluster size dis-
tributions exhibit a power law behavior over more than three
decades.

With regards to the cutoff cluster size, the fitted values of s∗ are
observed to potentially scale with the total flow rate Qtot as

s∗ ∝ Q−ζ
tot . (6)

Figure 9 shows s∗ for the three fractional flow rates as functions of
the the total flow rate Qtot . By fitting the proposed function above
to these sets of s∗, having the proportionality constant and ζ as fit
parameters, we find that ζ2/3 = 0.89 ± 0.08, ζ1/2 = 0.67 ± 0.05,
and ζ1/3 = 0.51 ± 0.05, for Foil = 2/3, 1/2, and 1/3, respectively.
Here, the errors correspond to the standard deviations from
the fitting procedure. From this, we see a trend of possibly
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the capillary number for the three different oil fractional flow
rates investigated. We observe that !Pss potentially exhibits the
behavior of a power law in the total flow rate Qtot ,

!Pss ∼ Qβ
tot, (4)

with exponents β1/2, 2/3 = 0.67 ± 0.05 for Foil = 1/2 and 2/3,
and debatably a higher β1/3 = 0.74 ± 0.05 for Foil = 1/3. Here
the errors are obtained from the estimated limits of power laws
fitted to the data sets. The values for β found here are higher
than the exponent value reported by Tallakstad et al. [32] in a
system with a large viscosity difference between the two fluids.
As described in the previous section the overall cluster configu-
ration is left static after onset of the perpetual state. Only minute
changes may be detected (See Figures 3, 4 for t/tss > 1). And as
already stated in the beginning of this section, this indicates that
both fluids flow in connected pathways from inlet to outlet. The
fact that both fluids must to some extent be flowing side by side,
is in agreement with the higher power law exponents observed
above. In a pure Darcy type flow, the pressure difference across
the model increases linearly with the applied flow rate. In our
system this would correspond to a power exponent β = 1. The
more the dynamics of the flow involves fluid interface dynam-
ics, the more the flow behavior will deviate from a Darcy flow
behavior. Tallakstad et al. [32] reported a more stable migration of
independent air clusters through the system in the perpetual state.
This corresponds to a larger degree of dynamics due to move-
ment of fluid interfaces than what is observed in the stationary
perpetual state of our system. This is in agreement with a larger
divergence away from a pure Darcy type flow.

Figure 7 shows the steady-state two-phase-flow structure for
a selection of separate experiments. With regards to the pos-
sible difference observed in the power law exponent between
Foil = 1/3 and the other two oil fractional flow rates, there is from
Figure 7 observably a higher degree of water-glycerol channel
flow in the Foil = 1/3 experiments. This is especially prominent
comparing the three rightmost images in Figure 7. There is also

less interface dynamics in the experiments where Foil = 1/3. This
is in agreement with a higher value for β, a value approaching 1.

In a perfect two dimensional geometry, where the pore space
is connected and therefore, by necessity, the solid structure is
disconnected, having both phases flow in connected structures
would only be possible if the two fluids flow in channels alongside
each other, unsupported by film flow along the solids. From the
2D projection of our system, we observe that the water-glycerol
phase appears as static disconnected clusters. This means that at
least the water-glycerol phase must in some regions of the system
be flowing as out-of-plane film flow. Thus, we have flow dynamics
dominated by three-dimensional effects.

3.3. WATER-GLYCEROL CLUSTER SIZE DISTRIBUTIONS
After the systems have reached their stationary state, we have
extracted the size distributions of the seemingly disconnected
water-glycerol clusters stuck in the porous medium. It should be
pointed out that these distributions cannot be directly compared
to those found by Tallakstad et al. [32]. In their investigation, it
was the distribution of clusters of air, and not water-glycerol, that
was analyzed. To minimize boundary effects in the distributions
extracted, all clusters connected to the boundaries of the images
used, have been removed in the analysis process. The normalized
probability density functions (PDF) P(s) for all total and frac-
tional flow rates probed are presented in Figure 8. We have here,
as in percolation theory [36], assumed that the normalized cluster
size distribution behaves as a PDF

P(s) ∝ s−τ exp ( − s/s∗), (5)

where s∗ is a statistical cutoff cluster size. Using a proportional-
ity constant, τ , and s∗ as our three fit parameters, we have fitted
this function to the data for each individual experiment. Due to
the lack of statistics for the largest clusters of the systems, we have
in the fitting procedure disregarded the data from these. For each
fractional flow rate, by averaging the fitted τ exponents for the
8 individual total flow rates (given in Table 2), it is found that
τ2/3 = 1.37 ± 0.09, τ1/2 = 1.43 ± 0.06, and τ1/3 = 1.48 ± 0.04,
for Foil = 2/3, 1/2, and 1/3, respectively. Here, the uncertainties
only reflect the differences in the exponents fitted to each individ-
ual distribution. Along with the fitted values of s∗, these average
values for τ were used to produce the data collapses shown in
Figure 8. From this figure, we observe that the cluster size dis-
tributions exhibit a power law behavior over more than three
decades.

With regards to the cutoff cluster size, the fitted values of s∗ are
observed to potentially scale with the total flow rate Qtot as

s∗ ∝ Q−ζ
tot . (6)

Figure 9 shows s∗ for the three fractional flow rates as functions of
the the total flow rate Qtot . By fitting the proposed function above
to these sets of s∗, having the proportionality constant and ζ as fit
parameters, we find that ζ2/3 = 0.89 ± 0.08, ζ1/2 = 0.67 ± 0.05,
and ζ1/3 = 0.51 ± 0.05, for Foil = 2/3, 1/2, and 1/3, respectively.
Here, the errors correspond to the standard deviations from
the fitting procedure. From this, we see a trend of possibly
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the capillary number for the three different oil fractional flow
rates investigated. We observe that !Pss potentially exhibits the
behavior of a power law in the total flow rate Qtot ,

!Pss ∼ Qβ
tot, (4)

with exponents β1/2, 2/3 = 0.67 ± 0.05 for Foil = 1/2 and 2/3,
and debatably a higher β1/3 = 0.74 ± 0.05 for Foil = 1/3. Here
the errors are obtained from the estimated limits of power laws
fitted to the data sets. The values for β found here are higher
than the exponent value reported by Tallakstad et al. [32] in a
system with a large viscosity difference between the two fluids.
As described in the previous section the overall cluster configu-
ration is left static after onset of the perpetual state. Only minute
changes may be detected (See Figures 3, 4 for t/tss > 1). And as
already stated in the beginning of this section, this indicates that
both fluids flow in connected pathways from inlet to outlet. The
fact that both fluids must to some extent be flowing side by side,
is in agreement with the higher power law exponents observed
above. In a pure Darcy type flow, the pressure difference across
the model increases linearly with the applied flow rate. In our
system this would correspond to a power exponent β = 1. The
more the dynamics of the flow involves fluid interface dynam-
ics, the more the flow behavior will deviate from a Darcy flow
behavior. Tallakstad et al. [32] reported a more stable migration of
independent air clusters through the system in the perpetual state.
This corresponds to a larger degree of dynamics due to move-
ment of fluid interfaces than what is observed in the stationary
perpetual state of our system. This is in agreement with a larger
divergence away from a pure Darcy type flow.

Figure 7 shows the steady-state two-phase-flow structure for
a selection of separate experiments. With regards to the pos-
sible difference observed in the power law exponent between
Foil = 1/3 and the other two oil fractional flow rates, there is from
Figure 7 observably a higher degree of water-glycerol channel
flow in the Foil = 1/3 experiments. This is especially prominent
comparing the three rightmost images in Figure 7. There is also

less interface dynamics in the experiments where Foil = 1/3. This
is in agreement with a higher value for β, a value approaching 1.

In a perfect two dimensional geometry, where the pore space
is connected and therefore, by necessity, the solid structure is
disconnected, having both phases flow in connected structures
would only be possible if the two fluids flow in channels alongside
each other, unsupported by film flow along the solids. From the
2D projection of our system, we observe that the water-glycerol
phase appears as static disconnected clusters. This means that at
least the water-glycerol phase must in some regions of the system
be flowing as out-of-plane film flow. Thus, we have flow dynamics
dominated by three-dimensional effects.

3.3. WATER-GLYCEROL CLUSTER SIZE DISTRIBUTIONS
After the systems have reached their stationary state, we have
extracted the size distributions of the seemingly disconnected
water-glycerol clusters stuck in the porous medium. It should be
pointed out that these distributions cannot be directly compared
to those found by Tallakstad et al. [32]. In their investigation, it
was the distribution of clusters of air, and not water-glycerol, that
was analyzed. To minimize boundary effects in the distributions
extracted, all clusters connected to the boundaries of the images
used, have been removed in the analysis process. The normalized
probability density functions (PDF) P(s) for all total and frac-
tional flow rates probed are presented in Figure 8. We have here,
as in percolation theory [36], assumed that the normalized cluster
size distribution behaves as a PDF

P(s) ∝ s−τ exp ( − s/s∗), (5)

where s∗ is a statistical cutoff cluster size. Using a proportional-
ity constant, τ , and s∗ as our three fit parameters, we have fitted
this function to the data for each individual experiment. Due to
the lack of statistics for the largest clusters of the systems, we have
in the fitting procedure disregarded the data from these. For each
fractional flow rate, by averaging the fitted τ exponents for the
8 individual total flow rates (given in Table 2), it is found that
τ2/3 = 1.37 ± 0.09, τ1/2 = 1.43 ± 0.06, and τ1/3 = 1.48 ± 0.04,
for Foil = 2/3, 1/2, and 1/3, respectively. Here, the uncertainties
only reflect the differences in the exponents fitted to each individ-
ual distribution. Along with the fitted values of s∗, these average
values for τ were used to produce the data collapses shown in
Figure 8. From this figure, we observe that the cluster size dis-
tributions exhibit a power law behavior over more than three
decades.

With regards to the cutoff cluster size, the fitted values of s∗ are
observed to potentially scale with the total flow rate Qtot as

s∗ ∝ Q−ζ
tot . (6)

Figure 9 shows s∗ for the three fractional flow rates as functions of
the the total flow rate Qtot . By fitting the proposed function above
to these sets of s∗, having the proportionality constant and ζ as fit
parameters, we find that ζ2/3 = 0.89 ± 0.08, ζ1/2 = 0.67 ± 0.05,
and ζ1/3 = 0.51 ± 0.05, for Foil = 2/3, 1/2, and 1/3, respectively.
Here, the errors correspond to the standard deviations from
the fitting procedure. From this, we see a trend of possibly
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the capillary number for the three different oil fractional flow
rates investigated. We observe that !Pss potentially exhibits the
behavior of a power law in the total flow rate Qtot ,

!Pss ∼ Qβ
tot, (4)

with exponents β1/2, 2/3 = 0.67 ± 0.05 for Foil = 1/2 and 2/3,
and debatably a higher β1/3 = 0.74 ± 0.05 for Foil = 1/3. Here
the errors are obtained from the estimated limits of power laws
fitted to the data sets. The values for β found here are higher
than the exponent value reported by Tallakstad et al. [32] in a
system with a large viscosity difference between the two fluids.
As described in the previous section the overall cluster configu-
ration is left static after onset of the perpetual state. Only minute
changes may be detected (See Figures 3, 4 for t/tss > 1). And as
already stated in the beginning of this section, this indicates that
both fluids flow in connected pathways from inlet to outlet. The
fact that both fluids must to some extent be flowing side by side,
is in agreement with the higher power law exponents observed
above. In a pure Darcy type flow, the pressure difference across
the model increases linearly with the applied flow rate. In our
system this would correspond to a power exponent β = 1. The
more the dynamics of the flow involves fluid interface dynam-
ics, the more the flow behavior will deviate from a Darcy flow
behavior. Tallakstad et al. [32] reported a more stable migration of
independent air clusters through the system in the perpetual state.
This corresponds to a larger degree of dynamics due to move-
ment of fluid interfaces than what is observed in the stationary
perpetual state of our system. This is in agreement with a larger
divergence away from a pure Darcy type flow.

Figure 7 shows the steady-state two-phase-flow structure for
a selection of separate experiments. With regards to the pos-
sible difference observed in the power law exponent between
Foil = 1/3 and the other two oil fractional flow rates, there is from
Figure 7 observably a higher degree of water-glycerol channel
flow in the Foil = 1/3 experiments. This is especially prominent
comparing the three rightmost images in Figure 7. There is also

less interface dynamics in the experiments where Foil = 1/3. This
is in agreement with a higher value for β, a value approaching 1.

In a perfect two dimensional geometry, where the pore space
is connected and therefore, by necessity, the solid structure is
disconnected, having both phases flow in connected structures
would only be possible if the two fluids flow in channels alongside
each other, unsupported by film flow along the solids. From the
2D projection of our system, we observe that the water-glycerol
phase appears as static disconnected clusters. This means that at
least the water-glycerol phase must in some regions of the system
be flowing as out-of-plane film flow. Thus, we have flow dynamics
dominated by three-dimensional effects.

3.3. WATER-GLYCEROL CLUSTER SIZE DISTRIBUTIONS
After the systems have reached their stationary state, we have
extracted the size distributions of the seemingly disconnected
water-glycerol clusters stuck in the porous medium. It should be
pointed out that these distributions cannot be directly compared
to those found by Tallakstad et al. [32]. In their investigation, it
was the distribution of clusters of air, and not water-glycerol, that
was analyzed. To minimize boundary effects in the distributions
extracted, all clusters connected to the boundaries of the images
used, have been removed in the analysis process. The normalized
probability density functions (PDF) P(s) for all total and frac-
tional flow rates probed are presented in Figure 8. We have here,
as in percolation theory [36], assumed that the normalized cluster
size distribution behaves as a PDF

P(s) ∝ s−τ exp ( − s/s∗), (5)

where s∗ is a statistical cutoff cluster size. Using a proportional-
ity constant, τ , and s∗ as our three fit parameters, we have fitted
this function to the data for each individual experiment. Due to
the lack of statistics for the largest clusters of the systems, we have
in the fitting procedure disregarded the data from these. For each
fractional flow rate, by averaging the fitted τ exponents for the
8 individual total flow rates (given in Table 2), it is found that
τ2/3 = 1.37 ± 0.09, τ1/2 = 1.43 ± 0.06, and τ1/3 = 1.48 ± 0.04,
for Foil = 2/3, 1/2, and 1/3, respectively. Here, the uncertainties
only reflect the differences in the exponents fitted to each individ-
ual distribution. Along with the fitted values of s∗, these average
values for τ were used to produce the data collapses shown in
Figure 8. From this figure, we observe that the cluster size dis-
tributions exhibit a power law behavior over more than three
decades.

With regards to the cutoff cluster size, the fitted values of s∗ are
observed to potentially scale with the total flow rate Qtot as

s∗ ∝ Q−ζ
tot . (6)

Figure 9 shows s∗ for the three fractional flow rates as functions of
the the total flow rate Qtot . By fitting the proposed function above
to these sets of s∗, having the proportionality constant and ζ as fit
parameters, we find that ζ2/3 = 0.89 ± 0.08, ζ1/2 = 0.67 ± 0.05,
and ζ1/3 = 0.51 ± 0.05, for Foil = 2/3, 1/2, and 1/3, respectively.
Here, the errors correspond to the standard deviations from
the fitting procedure. From this, we see a trend of possibly
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weight glycerol-water solution dyed with 0.1% Negrosine
and has a viscosity !w ¼ 0:11 Pa s at room temperature.
Air is used as the nonwetting fluid with viscosity !nw ¼
1:9" 10#5 Pa s, giving a viscosity ratio M ¼ !nw=!w $
10#4. The surface tension is measured to be " ¼ 6:4"
10#2 Nm#1.

The tuning parameter in the experiments is the total flow
rate, i.e., the sum of the flow rate of the wetting and
nonwetting fluid, and can during steady state be written
as Qtot ¼ Qw þQnw ¼ ð8þ 7ÞQ0, where Q0 is the flow
rate from every single syringe.

Gray scale images of the flow structure are taken at
regular intervals with a Pixelink Industrial Vision PL-
A781 digital camera. An image contains 3000" 2208
pixels, corresponding to a spatial resolution of $0:19 mm
per pixel (27 pixels in a pore of size 1 mm2). All analysis is
done on the basis of black and white thresholded images
[14] and the measured pressure signals.

The porous model is initially saturated with the wetting
phase. An experiment is started by injecting the fluid pair
from every other inlet hole. The initial structure consists of
bubbles or clusters of air distributed over various sizes, but
always much smaller than the system size. The clusters are
embedded in a background field of percolating wetting
fluid. Usually, the smallest air clusters are immobile and
trapped, whereas larger clusters are mobile and propagate
in the porous medium. However, trapped clusters can be
mobilized when they coalesce with larger migrating clus-
ters, and migrating clusters can be fragmented and thereby
trapped.

We divide an experiment into two regimes. A transient
regime where the mix of nonwetting clusters and wetting
fluid gradually fills up the model, as seen in Fig. 1. During
this time, the measured average pressure difference be-
tween y ¼ 0 and y ¼ L, !PL, increases. This is due to
the presence of more and more air clusters trapped in the
system, effectively lowering the relative permeability for
the viscous wetting fluid. At some characteristic time,
shortly after both phases are produced at the outlet, !PL

starts to fluctuate around a constant value. This marks the
start of the steady-state (or statistically stationary) regime.
The whole model now contains a homogeneous mix of the
two phases, transported through the model without ‘‘long
time’’ flow parameter changes.

Through six experiments we have studied how the mea-
sured steady-state pressure difference !PL varies with the
capillary number Ca, defined as

Ca ¼ !wQwa
2

"#0A
; (1)

where A ¼ Wa is the cross-sectional area. This is shown in
Fig. 2, for a span in the Ca number of roughly two decades.
The steady-state pressure fluctuations are Gaussian, indi-
cating that !PL results from a sum of independent, local
pressure differences over scales smaller than the system
size. It is evident that the pressure is consistent with a
power law in the Ca number !PL / Ca$, where the ex-

ponent is found to be $ ¼ 0:54( 0:08. This is a nontrivial
result, and we will return to the discussion shortly.
A general trend in the experiments, in passing from high

to low Ca numbers, is that the size or area of the largest air
clusters increases. This means that the geometry of the
clusters depends on the steady-state pressure gradient. To
quantify this, we have found the normalized probability
distributions of cluster extension in the x and y directions,
PðlxÞ and PðlyÞ, respectively (see Fig. 3). We define the

extension lengths lx and ly as the sides of the smallest

rectangle (bounding box) that can contain a cluster. For
clarity, ly lays parallel whereas lx lays transverse to the

average flow direction.
Analysis shows that, for a cluster of a given area s, the

extension lengths have well defined means hlxi and hlyi
increasing monotonically with s [23]. The corresponding
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FIG. 2. Mean pressure difference !PL during steady state as a
function of Ca. The fluctuations in !PL are of the order of 1 kPa,
i.e., very small compared to the mean values. A power law
dependence is found, with exponent $ ¼ 0:54( 0:08.
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FIG. 3. Air cluster extension length distributions PðlyÞ (filled
markers) and PðlxÞ (empty markers), collapsed by the rescaling
l)%PðliÞ vs li=l

), where i 2 fx; yg and % ¼ 2:8. The dashed
vertical line at li ¼ l) indicates the start of the different cutoff
behavior in the two directions. The lower left inset shows (solid
line) !PL / 1=l) with the corresponding experimental values
(squares). The upper right inset shows !l=hlyi vs hlxihlyi=l)2,
where !l ¼ hlyi# hlxi.

PRL 102, 074502 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

20 FEBRUARY 2009

074502-2

Aursjø et al. Simultaneous two-phase flow
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the capillary number for the three different oil fractional flow
rates investigated. We observe that !Pss potentially exhibits the
behavior of a power law in the total flow rate Qtot ,

!Pss ∼ Qβ
tot, (4)

with exponents β1/2, 2/3 = 0.67 ± 0.05 for Foil = 1/2 and 2/3,
and debatably a higher β1/3 = 0.74 ± 0.05 for Foil = 1/3. Here
the errors are obtained from the estimated limits of power laws
fitted to the data sets. The values for β found here are higher
than the exponent value reported by Tallakstad et al. [32] in a
system with a large viscosity difference between the two fluids.
As described in the previous section the overall cluster configu-
ration is left static after onset of the perpetual state. Only minute
changes may be detected (See Figures 3, 4 for t/tss > 1). And as
already stated in the beginning of this section, this indicates that
both fluids flow in connected pathways from inlet to outlet. The
fact that both fluids must to some extent be flowing side by side,
is in agreement with the higher power law exponents observed
above. In a pure Darcy type flow, the pressure difference across
the model increases linearly with the applied flow rate. In our
system this would correspond to a power exponent β = 1. The
more the dynamics of the flow involves fluid interface dynam-
ics, the more the flow behavior will deviate from a Darcy flow
behavior. Tallakstad et al. [32] reported a more stable migration of
independent air clusters through the system in the perpetual state.
This corresponds to a larger degree of dynamics due to move-
ment of fluid interfaces than what is observed in the stationary
perpetual state of our system. This is in agreement with a larger
divergence away from a pure Darcy type flow.

Figure 7 shows the steady-state two-phase-flow structure for
a selection of separate experiments. With regards to the pos-
sible difference observed in the power law exponent between
Foil = 1/3 and the other two oil fractional flow rates, there is from
Figure 7 observably a higher degree of water-glycerol channel
flow in the Foil = 1/3 experiments. This is especially prominent
comparing the three rightmost images in Figure 7. There is also

less interface dynamics in the experiments where Foil = 1/3. This
is in agreement with a higher value for β, a value approaching 1.

In a perfect two dimensional geometry, where the pore space
is connected and therefore, by necessity, the solid structure is
disconnected, having both phases flow in connected structures
would only be possible if the two fluids flow in channels alongside
each other, unsupported by film flow along the solids. From the
2D projection of our system, we observe that the water-glycerol
phase appears as static disconnected clusters. This means that at
least the water-glycerol phase must in some regions of the system
be flowing as out-of-plane film flow. Thus, we have flow dynamics
dominated by three-dimensional effects.

3.3. WATER-GLYCEROL CLUSTER SIZE DISTRIBUTIONS
After the systems have reached their stationary state, we have
extracted the size distributions of the seemingly disconnected
water-glycerol clusters stuck in the porous medium. It should be
pointed out that these distributions cannot be directly compared
to those found by Tallakstad et al. [32]. In their investigation, it
was the distribution of clusters of air, and not water-glycerol, that
was analyzed. To minimize boundary effects in the distributions
extracted, all clusters connected to the boundaries of the images
used, have been removed in the analysis process. The normalized
probability density functions (PDF) P(s) for all total and frac-
tional flow rates probed are presented in Figure 8. We have here,
as in percolation theory [36], assumed that the normalized cluster
size distribution behaves as a PDF

P(s) ∝ s−τ exp ( − s/s∗), (5)

where s∗ is a statistical cutoff cluster size. Using a proportional-
ity constant, τ , and s∗ as our three fit parameters, we have fitted
this function to the data for each individual experiment. Due to
the lack of statistics for the largest clusters of the systems, we have
in the fitting procedure disregarded the data from these. For each
fractional flow rate, by averaging the fitted τ exponents for the
8 individual total flow rates (given in Table 2), it is found that
τ2/3 = 1.37 ± 0.09, τ1/2 = 1.43 ± 0.06, and τ1/3 = 1.48 ± 0.04,
for Foil = 2/3, 1/2, and 1/3, respectively. Here, the uncertainties
only reflect the differences in the exponents fitted to each individ-
ual distribution. Along with the fitted values of s∗, these average
values for τ were used to produce the data collapses shown in
Figure 8. From this figure, we observe that the cluster size dis-
tributions exhibit a power law behavior over more than three
decades.

With regards to the cutoff cluster size, the fitted values of s∗ are
observed to potentially scale with the total flow rate Qtot as

s∗ ∝ Q−ζ
tot . (6)

Figure 9 shows s∗ for the three fractional flow rates as functions of
the the total flow rate Qtot . By fitting the proposed function above
to these sets of s∗, having the proportionality constant and ζ as fit
parameters, we find that ζ2/3 = 0.89 ± 0.08, ζ1/2 = 0.67 ± 0.05,
and ζ1/3 = 0.51 ± 0.05, for Foil = 2/3, 1/2, and 1/3, respectively.
Here, the errors correspond to the standard deviations from
the fitting procedure. From this, we see a trend of possibly
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little previous results exists, makes it difficult to say whether
this is intuitively correct. Numerical studies have sought af-
ter relations between saturation and other flow properties
!33,34". However, another factor, to be discussed in Sec.
III D, are possible compressibility effects. It is a priori not
clear that the saturation would be the same if the air were
incompressible. This is an issue that we will pursue in further
studies.

Figure 7#a$ shows the mean steady-state pressure differ-
ence !Pss as a function of the capillary number Ca. The
pressure fluctuations are small as shown in the pressure dis-
tributions PDF#!P−!Pss$ in the inset of Fig. 7#a$. For all
experiments the standard deviation in !Pss is on the order of
1 kPa. It is evident that !Pss follows a power law in Ca,

!Pss " Ca#, #3$

with the exponent

# = 0.54 $ 0.08. #4$

This behavior is by no means obvious !36", and we will
return to a physical interpretation and quantitative derivation
of this result in Sec. III C.

C. Cluster size distributions

After the systems have entered into steady state, we have
analyzed images of the structure in order to determine the
size distribution of nonwetting clusters or bubbles. The nor-
malized probability density function #PDF$ p#s$ as a function
of cluster size s for all Ca numbers investigated is shown in
Fig. 8#a$. A trivial observation is the decrease in probability
with increasing cluster size. Less obvious is the fact that the
curves show an exponential-like cutoff depending on the
capillary number. Additionally there is a cutoff region for
smaller clusters, as the cluster size approaches the bead size.
Since the beads are counted as part of the clusters during
image analysis, we have no information at this size scale. For
the highest Ca numbers, the whole distribution is dominated
by the exponential cutoff. However, as the Ca number is
decreased, a small region of power-law-like behavior is ob-
served in between the two cutoffs.

Analogously to what is done in percolation theory !37",
we assume that the distribution of the clusters follows the
PDF,

p#s$ " s−% exp#− s/s!$ , #5$

where s! is the cutoff cluster size. The latter function has
been fitted, using a proportionality constant % and s! as fit
parameters, to the experimental data for each Ca number.
This is shown by the solid lines in Fig. 8#a$. By averaging
the fitted % exponents it is found that %=2.07$0.18. The
uncertainty only reflects the difference in fitted exponents.
From the distributions it is seen that no power-law region is
well pronounced, and we do not claim that % is determined
with a large degree of certainty in this case. When it comes
to the cutoff cluster size, the fitted values of s! are found to
scale with Ca !Eq. #1$" as

s! " Ca−&, #6$

where &=0.98$0.07. This is shown in the inset of Fig. 8#b$.
One should note, even for the lowest Ca number, that s!

%105 pixels is considerably smaller than the system size
%107 pixels, meaning that large-scale finite-size effects
should not be of importance. Equation #5$ predicts a rescal-
ing of the horizontal and the vertical axes with 1 /s! and s!%,
respectively. On this basis the data collapse in Fig. 8#b$ is
obtained.

From the above considerations, the cluster size PDF of
nonwetting clusters in steady state obeys the scaling function

p#s$ " s!−%H#s/s!$ , #7$

where H#x$ contains an exponential cutoff !Eq. #5$", so that
p#s$→0 when x'1.

Up to now the cluster size measured in area was studied.
One step further is to consider the linear extension of the
clusters in the two directions: lx transverse to the overall
direction of flow and ly oriented along the overall direction
of flow. This is achieved by assigning a bounding box of
sides lx and ly to a cluster of size s, i.e., the smallest rectangle
that can contain the cluster. In the following, li, where i
! &x ,y', will denote both the lx and the ly extensions. It is
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FIG. 8. #Color online$ Nonwetting cluster size PDF p#s$ in
steady state for all experiments. The cluster size s is measured in
pixels; 1 pixel=0.037 mm2. #a$ Normalized probability distribu-
tions. The dominating cutoff behavior is evident. The solid lines
represent fits of Eq. #5$. #b$ The horizontal and the vertical axes are
rescaled with 1 /s! and s!%, respectively, to obtain the data collapse.
The Ca dependence of the cutoff cluster size s! is shown in the
inset.
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Since the beads are counted as part of the clusters during
image analysis, we have no information at this size scale. For
the highest Ca numbers, the whole distribution is dominated
by the exponential cutoff. However, as the Ca number is
decreased, a small region of power-law-like behavior is ob-
served in between the two cutoffs.

Analogously to what is done in percolation theory !37",
we assume that the distribution of the clusters follows the
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where s! is the cutoff cluster size. The latter function has
been fitted, using a proportionality constant % and s! as fit
parameters, to the experimental data for each Ca number.
This is shown by the solid lines in Fig. 8#a$. By averaging
the fitted % exponents it is found that %=2.07$0.18. The
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From the distributions it is seen that no power-law region is
well pronounced, and we do not claim that % is determined
with a large degree of certainty in this case. When it comes
to the cutoff cluster size, the fitted values of s! are found to
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One should note, even for the lowest Ca number, that s!
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%107 pixels, meaning that large-scale finite-size effects
should not be of importance. Equation #5$ predicts a rescal-
ing of the horizontal and the vertical axes with 1 /s! and s!%,
respectively. On this basis the data collapse in Fig. 8#b$ is
obtained.

From the above considerations, the cluster size PDF of
nonwetting clusters in steady state obeys the scaling function

p#s$ " s!−%H#s/s!$ , #7$

where H#x$ contains an exponential cutoff !Eq. #5$", so that
p#s$→0 when x'1.

Up to now the cluster size measured in area was studied.
One step further is to consider the linear extension of the
clusters in the two directions: lx transverse to the overall
direction of flow and ly oriented along the overall direction
of flow. This is achieved by assigning a bounding box of
sides lx and ly to a cluster of size s, i.e., the smallest rectangle
that can contain the cluster. In the following, li, where i
! &x ,y', will denote both the lx and the ly extensions. It is

10
2

10
3

10
4

10
5

10
−10

10
−8

10
−6

10
−4

10
−2

s

p(
s)

Ca = 0.17
Ca = 0.090
Ca = 0.032
Ca = 0.015
Ca = 0.0079
Ca = 0.0027

10
−3

10
−2

10
−1

10
0

10
1

10
−4

10
−2

10
0

10
2

10
4

10
6

s/s*

s*
τ

p(
s)

10
−2

10
−110

2

10
3

10
4

Ca

s*

(a)

(b)

FIG. 8. #Color online$ Nonwetting cluster size PDF p#s$ in
steady state for all experiments. The cluster size s is measured in
pixels; 1 pixel=0.037 mm2. #a$ Normalized probability distribu-
tions. The dominating cutoff behavior is evident. The solid lines
represent fits of Eq. #5$. #b$ The horizontal and the vertical axes are
rescaled with 1 /s! and s!%, respectively, to obtain the data collapse.
The Ca dependence of the cutoff cluster size s! is shown in the
inset.
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cluster	  	  configura(on	  

History	  independence	   ?	  

Given that a pore located at a position r0 was invaded at a time t0. What is the probability

that a pore located a distance between r and r + dr away from r0 is invaded in a time

between t0 + t and t0 + t+ dt.

� = 0.67± 0.05 (1)

1

Given that a pore located at a position r0 was invaded at a time t0. What is the probability

that a pore located a distance between r and r + dr away from r0 is invaded in a time

between t0 + t and t0 + t+ dt.

⌧ = 1.43± 0.06 (1)

1

Summary	  


