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Electrokinetics : Polarization and mobility

When an electric field is applied to a colloidal particle, an electric dipole
P = «F is formed and the particle has an electrophoretic mobility p,.
In general:

o = f(a) information about :
a = f(up) particle charge, size, Stern layer

General expressions for yy and a are available, for all surface charges and ionic
strengths and several particle shapes.
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Electrokinetic measurements
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Research questions

question 1:

Uem = Ucyp = Ugsa ?

question 2 :

How can the electric
conductivity o = [ (a)be
expressed as function of
independently measurable
parameters for suspensions,
slurries and soils?



entropy production: g;,; = o + (ag + ap)
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total mass flow is zero in barycentric frame of reference :
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total mass flow in volume-fixed frame of reference:
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Research question 1

It can similarly be demonstrated that:

p
(1- ¢s)#0 — UEm = Hcvp= ——HUEsA
e P

theory Zero zero
volume mass
flux flux

years of debate...

“In their 1999 paper Dukhin and co-workers asserted that for CVP and CVI measurements, the “correct
inertial frame is the laboratory frame of reference, [...]

The relationship (Eq. (1.4)) between the ESA and the dynamic mobility, which is derived in Appendix A, is
based on the use of a laboratory frame of reference. If this were not the case and as Dukhin asserts, the
frame of reference moves back and forth with some part of the measuring device, there would be an
alternating inertial force in the governing equations.” [O’Brien et al., Coll. and Surf. A, 2003]
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Future electrokinetic measurements

Caution should be taken regarding the frame of reference to link the
different fluxes!

porous media
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Research question 2 for porous media

in an electrolyte.

OOQOO In this case:
%OOO to =0

OOO%O O The porous media is seen as packed, immobile spheres

a) How to correlate « to the electric conductivity o ?
b) How to correlate o to relevant system parameters?

Note: for convenience, the dipolar coefficient § will be used instead of the polarizability « :

a = 4mege,a’f

Eo€e 1S the dielectric permittivity of water
a is the radius of a sphere



How to correlate [ to the electric conductivity o
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How to correlate 3 to relevant system parameters

%@OO%D \: P = 4neye,a’BE I

\ Y J information about :
_ particle charge, size, Stern layer,

Om = O;m + i(DSO&'T porosity, ionic strength, temperature
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Maxwell-Wagner-Clausius-Mossotti
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Comparison with other theories

models based on Schwartz (1962) full theory

considers only the movement of counterions all movements of ions are considered
parallel to the sphere: 6, = 0

LWTy
— . — A2
UII,Schwartz - UII 1+ ink y T =4 /(ZD)

for w >» w, = D/a? : the theories give the same (complex) conductivity
a

O\,schwartz — O]

61 =0
R ' B I —o
Tm :O'—i—(TH”J +gfs,j' 7 = 1+ o /2
. - 3¢ 0,
O sur = -
Archie I 1 +0.(1—2) 102 (1/2—2)/2
./ N 1 —o,
m Onf = ————iWeoEe
‘O’ — @mac‘ hf [ (,.-"'),‘,./2{ 0
- | o 3(6y+0y/)
m = In l%/z /21/111[@)}23/2 2[8g+28€+a//(l+2,h/.]2)]

Revil, André, and Magnus Skold. "Salinity dependence of spectral induced polarization in sands and sandstones." Geophysical Journal
International 187.2 (2011): 813-824.
Vinegar, H. J. & Waxman, M. H., 1984. Induced polarization of shaly sands, Geophysics, 49(8), 1267-1287.



[S/m]

Charged glass beads (q=6.2 mC/m?)atw — 0

E_l T ™ T
10_2!’ -
3 : g L— Maxwell-Wagner
_ 10 o _:_T-z—r'f"“ O 50-60 um
- PR - 5 80-106 um
~ —
10—4 1 O 150-212 um
O 212-300 um
425-600 um
1 L 1 1 "I B | 1 1 1 "I | I I | I I  —————
10° 10~ 10 10”
c [S/m]
-
o 2 ¢ _ 1 —0
Du = 1L = [exp(ﬂﬂ) — ]] » O‘iu_ﬂ e =
e K 2T 1+ (;}5/2

Kirichek, A., C. Chassagne, and R. Ghose. "Dielectric spectroscopy of granular material in an electrolyte solution of any

ionic strength." Colloids and Surfaces A: Physicochemical and Engineering Aspects (2017).

13



Sands and sandstonesat w — 0

2
.]U -_---.Illl—---.l|||_--- m L] lll'm L] 'lllm L] 'll'lq L] llllq L] 'll'“
] | —— M-W:q=03 CU/m
, —2
10 F—M-W:g=0.1 Um
10[' ——M-W:g=002 Um"™ :
= l —— M-W:q=0.005 (/m _ .
S 107 I——M-W:a0 5
il A @ Compacted sand ooy
= 10—2 Uncompacted sand —l
O Berea sandstone
-3 O Fontainebleau sandstone
10 0 Munsteraner sandstone
-4 ©O Bentheimersandstone
10
10_5 2 aual aaanal aul 2 aual
-7 -6 -5 -4 3 -2 =1 0
10 10 10 10 10 10 10 10
G [S/m]
1 — o,
Du=0 . Du=0 L
Eff T Jm/J with Om _ l 1+ /2

Kirichek, A., C. Chassagne, and R. Ghose. "Dielectric spectroscopy of granular material in an electrolyte solution of any
ionic strength." Colloids and Surfaces A: Physicochemical and Engineering Aspects (2017). 14



9]

Frequency dependence
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Frequency dependence

accuracy Is extremely important

Om = Om + 10EpEy (should be less than 10% error !)
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Discussion and conclusion

- better conductivity measurements are needed (accuracy)

- the models work provided that double layers do not interact significantly (i.e.
for large particles the major contribution comes from the dielectric core)

- clogging was not considered

- the models can be adapted easily for spheroidal particles

- in case the particles are polydisperse, the dominant contribution comes from
the particles having the largest ¢.Du. For small Du one can show that:
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For shaley sands/ sandstones the dominant contribution could
therefore come from the clayey part.
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