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Introduction

» Hydrocarbon Reservoirs
» Radioactive waste repositories
» Geothermal energy utilization
» Partially saturated soils

> Frozen soils
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Governing Equations

3 Non-Wetting eI T Non-Wetting
= Phase
Based on continuum
Solid Phase
theory of mixture
Wetting

Phase

Basic assumptions:

1- Each point in the domain is simultaneously occupied with all of the phases and based on their volume

fraction
2- Local thermal equilibrium between the phases
3- Small strain
Description:

» Solid phase: Lagrangian
> Fluid phases: Eulerian with respect to the solid phase B NTN U
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Governing Equations

» Flow equations

Ds[nwpw] y

Wetting phase mass balance: Dt +V.(n,o,w,)+Nn,0,Vy. =M,

D*(n :
Non-wetting phase mass balance: % +V.(n,pw,)+N.p Vv, =M

Kk

Wetting phase : nw, =—-"- [ng - pr]
My

- Darcy’s law |:>
' KKk,
Non-wetting phase : N,W, =—— [ng - pr]

W

- Soil-water characteristic: |:> n,=F(p.,T)

- Small strain assumption

- Quasi static condition with irrotational

deformation field
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Governing Equations

» Equilibrium equations

Momentum balance of the whole system: V.o=pg

Effective stress: ¢=¢'+ lm (nw p, +N P, )
n
Stress-strain relation: de’ = D, [de—de, |
: : 1 T
Small strain assumption: &= —E[Vu +(Vu) }

Thermal part of strain: de, = —(% dT)1
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Governing Equations

> Heat transfer equations

S

DT
Energy balance of the whole system: pC Ot

+(n,p,C W, +N p.Cw )VT +Vg=0Q

where:

pC=(1-n)pC, +n,p,.C,+np,C

n

Fourier’s law: §=—XV 1

where:

Leit = Xs Lo X"
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Numerical Solution

» Equilibrium equations: Standard Galerkin FEM
» Heat transfer equations: Upwind FEM Schemes
» Flow equations: Conservative FEM Scheme

» Time discretization: Fully Implicit Scheme

e \ //

Velocity

o— —— — & @

T e=1 e=2  e=3  e=4 i BNTNU
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Numerical Solution
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Verification
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3D water-flooding tests on sandstone core samples

(Hadia et al., 2008) @NTNU
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Verification

Water saturation:

Beginning of the test After 0.3PV of injection

025 %
After 1.3PV of mjection After 2.5PV of injection
s m HaT |

3D water-flooding tests on sandstone core samples

(Hadia et al., 2008) @NTNU
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Veriﬁcation ; - Effe&tjve Stress gg’a) - 1
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Verification

Streamlines:
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Massarotti et al., 2001
Natural convection due to temperature gradient ENTNU
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Verification

Thermally Insulated Temperature:
) ////////////////////////////,/
2 2 =025 ts t=0.5 ts
7 /
-, .
7 Porous Medium 7
7 20
O ?m o
ptls e Q
K7 g A R
||§ ? n
|—§ ?'—
7 /
7 /
/ 7
é /,;; o 2 o
2 Initial Temperature =25 C Z SIS B 2
Z 7 i] &
TS rrss.

Thermally Insulated

| | | ] . _ r | t=0.75ts

N ) | #"H"“\ o
|II b ¥
II‘I .' ll{ III || | 0 3
I|I .' ’ ' ) i § g

| o &

| | |' 0

| | I| |' P 8 |8
| | ‘ ' ! ( 3/
J [ | I‘ |I |{ J | [ \ I | II | ] T T

Massarotti et aI., 2001
Natural convection due to temperature gradient @ NTNTJ

Thermo-Hydro-Mechanical Coupling in Geomechanics, Sep. 2017




Verification
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Non-isothermal Mandel problem
P ®NTNU
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Verification
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Verification
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Verification 0
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Verification

Waterfront:
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Conclusion

» Based on the continuum theory of mixture, a mixture could be modeled as superimposed

continua.

» The conservation equations of mass, linear momentum and energy, together with
constitutive relations for the pore fluids and solid skeleton constituted the basis of the multi-

phase formulation.

» The propose numerical solution preserves local and global conservation of mass and is
capable of handling complex geometries and heterogeneities, and dealing with convection

dominated problems.

» Different parts of the coupled solution are verified against several benchmark boundary

value problems.
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Thanks for your attention!
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