Non-equilibrium thermodynamics Exercise 6 Transport of mass and charge

1

Electrochemical cells are systems with transport of mass and charge.

- a) What are the flux equations for such systems?
- b) What is the definition of the transference *coefficient*?
- c) Derive the relation between the phenomenological coefficients and
 - i) electric conductivity
 - ii) diffusion coefficients (what will be the difference for the components CH₄, AgNO₃ and ZnI₂?)
 - iii) transference coefficients

$\mathbf{2}$

- a) The following concentration cell is given: $Ag(s)|AgCl(s)|NaCl(aq,c_1)||NaCl(aq,c_2)|AgCl(s)|Ag(s).$
 - i) What is the definition of a transference *number*? Express the transference number for Na⁺ and Cl⁻ in this cell.
 - ii) Assume constant transference numbers through the cell and account for all changes taking place when one mole of electrons passes from left to right in the outer circuit.
 - iii) What is the relation between the transference numbers and the transference coefficient in this cell?
- b) Consider the following concentration cell: $Zn(Hg)|ZnI_2(aq,c_1)||ZnI_2(aq,c_2)|Zn(Hg)$. Redo task ii) and iii) above for this concentration cell.

3

You have the following concentration cell: Ag(s)|AgCl(s)|KCl(aq,c_1)||KCl(aq,c_2)|AgCl(s)|Ag(s). Calculate the emf of a cell with $c_1 = 0.1$ kmol m⁻³ and $c_2 = 0.01$ kmol m⁻³ at 25 °C and transference numbers $t_{K^+} = t_{Cl^-} = 0.5$.

4

- a) Consider the electrochemical cell Ag(s)|AgCl(s)|HCl(aq, c_1)|^C|HCl(aq, c_2)|AgCl(s)|Ag(s). The two half-cells are separated by a cation exchange membrane, $|^{C}|$, which does not allow any water transport. As there is a membrane present, it should be used as frame of reference. Assume ideal solutions and calculate the emf of the cell at 25 °C, when $c_1 = 0.1$ kmol m⁻³ and $c_2 = 0.01$ kmol m⁻³. Neglect the contribution to the emf from transference of water.
- b) Consider the same cell with the same conditions as in a), but the membrane allows some water transport, $t_{H_2O} = 5$. Calculate the emf of the cell in this case.

Hint: Use Gibbs-Duhem's equation.

$\mathbf{5}$

Calculate the emf obtainable by moving water in an ion exchange membrane between two electrochemical half cells with hydrogen reversible electrodes and a pressure difference of 3 bar. Hydrogen reversible electrodes give a positive transference coefficient, in this case 2.6, and the molar volume of water is $18 \cdot 10^{-6} \text{ m}^3/\text{mol.}$

6

As we saw in exercise 1, work is lost where a river meets the ocean. One way to exploit this work is in an electrodialysis salt power plant. Calculate the emf of a single unit of an electrodialysis cell: $Ag(s)|AgCl(s)|NaCl(aq,c_1)|^C|NaCl(aq,c_2)|^A|NaCl(aq,c_3)|AgCl(s)|Ag(s)$. Consider the ion exchange membranes to be perfect. Sea water enters compartment 1 and 3 while river water enters compartment 2. Electrodes are reversible to chloride. The salt concentration in sea water compartments are 0.55 mol/m³. At that concentration and temperature 300 K, the mean activity coefficient is 0.681. The salt concentration in the river water compartment is 0.001 mol/m³.