

Nucleation of multicomponent droplets

(with an application to vodka)

Ailo Aasen, David Reguera and Øivind Wilhelmsen August 30, 2019 Trondheim

DNTNU **()** SINTEF

- The initial step in a phase transition
- Fluctuations in metastable phase \rightarrow embryos of stable phase
- Nucleation theory tries to answer two questions
 - 1. What are the properties of the embryos?
 - 2. What is the nucleation rate?

 $J = \frac{\text{number of nucleated droplets}}{\text{time} \times \text{volume}}$

(nucleation rate)

Classical Nucleation Theory (CNT)

3

The Classical Nucleation Theory

- Fluctuation theory: $Prob(droplet) \sim \exp(-\Delta G/kT)$
 - Free energy of liquid: described by bulk thermodynamics
 - Free energy of surface: described by surface tension

The Classical Nucleation Theory

- Fluctuation theory: $Prob(droplet) \sim \exp(-\Delta G/kT)$
 - Free energy of liquid: described by bulk thermodynamics
 - Free energy of surface: described by surface tension
- CNT yields the predictions

 $\Delta G^* = 4\pi (R^*)^2 \sigma^* / 3$ $J_{\rm CNT} = K \exp\left(-\Delta G^* / kT\right)$

- A key approximation:
 - Surface tension is independent of curvature

- Qualitatively reasonable picture of nucleation
- Quantitative errors are in some cases HUGE
 - Pure Ar nucleation rates underpredicted by ~20 orders of magnitude¹
- Unphysical predictions for surface-active systems
 - Water-ethanol is particularly difficult

[1] Iland et al. 2007. Argon nucleation in a cryogenic nucleation pulse chamber. J. Chem. Phys. **127**

Critical activities of ethanol-water at 260 K

- Activities: $a_i = P_i / P_i^{\text{sat}}$
- $J_{\text{CNT}} = J_{\text{CNT}}(a_1, a_2, T)$
- Critical activities:

$$J_{\rm spec} = 10^{13} \ {\rm m}^{-3} {\rm s}^{-1}$$

DNTNU **()** SINTEF

ONTNU **()** SINTEF

Why is there a "hump"?

• Result from nucleation theory:

$$\left(\frac{\partial a_2}{\partial a_1}\right)_{J,T} = -\frac{a_2}{a_1}\frac{N_1}{N_2}$$

- CNT predicts a negative amount of water particles in the critical droplet!
- Completely unphysical

A well-known problem

- Unfortunately the water-ethanol system is so strongly surface active that classical theory breaks down...¹
- Surface enrichment of ethanol in the clusters [...] is presumably the origin of the observed discrepancy.²

[1] Vehkamäki. Classical nucleation theory for multicomponent systems. Springer 2006.

[2] Viisanen et al. 1994. Measurement of the molecular content of binary nuclei. II. Use of the nucleation rate surface for water-ethanol. J. Chem. Phys. 100.

() SINTEF

Curvature-corrected CNT (c-CNT)

11

Curvature-dependent surface tension

- Historically a controversial topic^{1,2}
- Pure fluids
 - Emerging consensus on the curvature dependence
 - Dramatic improvement for pure water nucleation³
- Mixtures
 - Barely treated in the literature
 - Only recently proposed and calculated⁴

[4] Aasen et al. 2018. Tolman lengths and rigidity constants of multicomponent fluids: Fundamental theory and numerical examples. J. Chem. Phys. 148.

SINTEF

^[1] Tolman 1949. The effect of droplet size on surface tension. J. Chem. Phys. 17.

^[2] Malijevský and Jackson 2012. A perspective on the interfacial properties of nanoscopic drops. J. Phys.: Condens. Matter 24.

^[3] Wilhelmsen et al. 2015. The Tolman length and ridigity constants of water and their role in nucleation. J. Chem. Phys. 142.

The capillary approximation

 $\sigma(R) = \sigma_0$

The Helfrich expansion $\sigma(R) = \sigma_0 + \frac{\sigma_1}{R} + \frac{\sigma_2}{R^2}$

Helfrich coefficients:

• $\sigma_1 = -2\sigma_0 \delta$, where δ is the Tolman length • $\sigma_2 = 2k + \bar{k}$, where k, \bar{k} are rigidity constants

The capillary approximation

$$\sigma(R, \boldsymbol{x}) = \sigma_0(\boldsymbol{x})$$

Curvature-dependent surface tension – mixtures
The Helfrich expansion

$$\sigma(R, \mathbf{x}) = \sigma_0(\mathbf{x}) + \frac{\sigma_1(\mathbf{x})}{R} + \frac{\sigma_2(\mathbf{x})}{R^2}$$

• $\sigma_1 = -2\sigma_0 \delta$, where δ is a mixture Tolman length • $\sigma_2 = 2k + \bar{k}$, where k, \bar{k} are mixture rigidity constants

ONTNU () SINTEF

Helfrich coefficients

- Computed using Density Gradient Theory¹
 - CPA equation of state for bulk thermodynamics
 - Fit to planar surface tension for ethanol and water
- No fitting to nucleation experiments

SINTEF

[1] Aasen et al. 2018. Tolman lengths and rigidity constants of multicomponent fluids: Fundamental theory and numerical examples. J. Chem. Phys. 148.

Comparison of CNT and c-CNT

Critical activities: c-CNT vs. experiments

19

Quantitative improvement for the rates

- Measure of deviation: $\left|\log_{10}\left(J/J_{expt}\right)\right|$
- Measurements¹ at 260 K for ethanol-water

	CNT	c-CNT
Worst	21.3	2.23
Average	10.9	0.73
Median	12.7	0.51

[1] Viisanen et al. 1994. Measurement of the molecular content of binary nuclei. II. Use of the nucleation rate surface for water-ethanol. J. Chem. Phys. 100.

DNTNU

SINTEF

Concluding remarks

- Problems of CNT:
 - $J_{\rm CNT}$ can be quantitatively wrong by ~20 orders of magnitude
 - Predicts unphysical molecular content of critical clusters

- Helfrich coefficients can be computed from an independent model, and incorporated consistently into the theory \rightarrow c-CNT
- c-CNT yields quantitative agreement with experiment

Thank you

