o A/ Vo S
% = Norwegian
=l PorelLab 5 X

NTNU-UiO Porous Media Laboratory

The Research-Council’of Norway

SK70 - Signe Kjelstrup

Alex Hansen

09.09.2019

BNTNU

@9 UiO 2 University of Oslo



2002

PorelLab

NTNU-UiO Porous Media Laboratory

PHYSICAL REVIEW E, VOLUME 65, 056310

Relation between pressure and fractional flow in two-phase flow in porous media

Henning Arendt Knudsen* and Alex Hansen'
Department of Physics, Norwegian University of Science and Technology, NTNU, NO-7491 Trondheim, Norway
(Recerved 20 February 2001; published 16 May 2002)

dFﬂ“.Jr AP
5 B(Ca;—ﬂpg,

A(Ca)

09.09.2019 O NTNU

UiO ¢ University of Oslo 2




2008

Comput Geosci (2009) 13:227-234
DOI 10.1007/s10596-008-9109-7

ORIGINAL PAPER

Towards a thermodynamics of immiscible two-phase

steady-state flow in porous media

Alex Hansen - Thomas Ramstad

Received: 5 May 2008 / Accepted: 4 September 2008 / Published online: 1 October 2008

© Springer Science + Business Media B.V. 2008

Abstract We propose that steady-state two-phase flow
in porous media may be described through a formalism
closely resembling equilibrium thermodynamics. This
leads to a Monte Carlo method that will be highly
efficient in studying two-phase flow under steady-state
conditions numerically.

That is, the porous medium typically would be prepared
containing only one of the fluids. The second fluid,
immiscible with the first, would then be pumped into
the medium and the invasion patterns recorded. Hence,
the focus was on transients.

Two-phase flow in porous media is also at the core of
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> Den 22.10.2010 11:02, skrev Ragnhild Skorpa:

> > Hei

> >

> > Trodde vi ble enige om 16 november pa telefonen. 23 november passer
> > darlig siden det er workshop i beregningskjemi den dagen her i

> > Trondheim, og sta@rste delen av gruppa vil vaere der.

> >

> > | denne sammenhengen haper jeg at du har muligheten til a ta det 16

> > november, ellers ma det nesten bli 30 november. Passer det?
> >

> > Vennlig hilsen
> > Ragnhild Skorpa
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Multiphase flow in porous media under steady-state conditions: Can we use thermodynamics to describe it?

Alex Hansen
Department of Physics
NTNU

Two immiscible fluids competing for the same pore space in a porous medium undergo instabilities upon instabilities with
extremely complex structures as a result. Understanding these structures has value beyond the purely scientific one: some
40 % of the oil in oil reservoirs is deemed unrecoverable due to these structures. The standard approach to this problem has
been to study flooding where the porous medium is filled with one of the fluids. The other fluid is then injected and the
evolution of the interface between them then followed. An easier situation is, however, to imagine a representative volume
element deep inside the porous medium (e.g. the reservoir) and then to follow what happens inside it when a mixture of the
fluids is injected into the porous medium at a distance sufficient far away from the representative volume element for local
steady state to have set in by the time the fluids reach it. It turns out that this situation has almost been overlooked in the
literature. We claim that the structure of the flow under such steady-state conditions is a state in the sense that it only
depends on a small set of macroscopic control parameters. Perhaps a "thermodynamics” may be constructed to describe it?
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Abstract We analyse the operation of the Ca®*-ATPase
jon pump using a kinetic cycle diagram. Using the meth-
odology of Hill, we obtain the cycle fluxes, entropy pro-
duction and efficiency of the pump. We compare these
resulis with a mesoscopic non-equilibrium description of
the pump and show that the kinetic and mesoscopic pic-
tures are in accordance with each other. This gives further
support to the mesoscopic theory, which is less restricted
and also can include the heat flux as a variable. We also
show how motors can be characterised in terms of unidi-
rectional backward fluxes, We proceed to show how the
‘mesoscopic approach can be used to identify fast and slow
steps of the model in terms of activation energies, and how
this can be used to simplify the kinetic diagram.

Keywords Ca®*-ATPase - Active transport - lon pump -
Kinetic model - Mesoscopic model
Introduction

The lipid bilayers of biological membranes are generally
impermeable to ions and most polar molecules (a notable
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exception being osmosis of water) and represent a physical
barrier to transport (Berg et al. 2002; Nelson 2003). Inte-
gral membrane proteins may act as pumps and channels
and enable transport of ions and molecules essential for cell
operation across the membrane with high selectivity (Berg
et al. 2002; Nelson 2003; Garrett and Grisham 2010).
Among the transporting integral membrane proteins are
the P-type ATPases, which actively transport cations across
biological membranes. The P-type ATPases consiituie
a large family of membrane proteins including the
Ca*-ATPase, the Na'/K*-ATPase, the plant and fungal
H'-ATPases and the heavy-metal-transporting ATPases
(Meller et al. 2010; Kiihlbrandt 2004; Lee and East 2001).
The sarcoplasmic reticulum Ca**-ATPase (SERCA) was
the of the P-type ATPases for which a 3D structure
was determined by Toyoshima et al. (2000). The structure

of the Ca®*-ATPase in one of its conformations is shown in
Fig. 1. Since the first 3D structure was reported, several

formations’ of Ca®"-ATPase have also been
resolved (Xu et al. 2002; Toyoshima and Nomura 2002;
Sprensen et al. 2004; Olesen et al. 2004, 2007a; Toyoshi-
ma and Mizutani 2004; Toyoshima et al. 2004, 2007, 2011;
Obara et al. 2005: Sphoel et al. 2006; Jensen et al. 2006
Moncoq et al. 2007; Takahashi et al. 2007; Laursen et al.
2009; Winther et al. 2010), enabling a structural interpre-
tation of the operation of the pump. Combined with the
vast experimental kinetic and mutagenic data available for
the Ca”*-ATPase, this has led to a detailed picture of the

! Forty-five structures have heen deposited in the Protein Data Bank,
with the identification codes 1FQU, 1IWO, IKJU, I1SU4, 1TSS,
ITST. IVFP, IWPE. IWPG, IXP5. 2AGV, 2BY4, 2088, 2C8K
2CBL, 2C9M, 2D

JEAR, 2EAS, 2EAT, 2EAU, 2091, 20A0,
27Z9R, 2ZBD, 27BE, 2ZBF, 2ZBG, 3AR2, 3AR3, 3AR4, 3ARS,
3ARG, 3AR7, 3ARS, 3ARY, 3BYB, 3B9R, 3BA6, 3FGO, 3FPB, 3FPS,
3NAL, NAM and 3NAN.
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Abstract We analyse the operation of the Ca®*-ATPase
ion pump using a kinetic cycle diagram. Using the meth-
odology of Hill, we obtain the cycle fluxes, entropy pro-
duction and efficiency of the pump. We compare these
resulis with a mesoscopic non-equilibrium description of
the pump and show that the kinetic and mesoscopic pic-
tures are in accordance with each other. This gives further
support 10 the mesoscopic theory, which is less restricted
and also can include the heat flux as a variable. We also
show how motors can be characterised in terms of un
rectional backward fluxes, We proceed to show how the
mesoscopic approach can be used to identify fast and slow
steps of the model in terms of activation energies, and how
this can be used to simplify the kinetic diagram.

Keywords Ca’-ATPase - Active transport - lon pump -
Kinetic model - Mesoscopic model

Introduction

The lipid bilayers of biological membranes are generally
impermeable 10 fons and most polar molecules (a notable
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exception being osmosis of water) and represent a physical
barrier to transport (Berg et al. 2002; Nelson 2003). Inte-
gral membrane proteins may act as pumps and channels
and enable transport of ions and molecules essential for cell
operation across the membrane with high selectivity (Berg
et al. 2002; Nelson 2003; Garrett and Grisham 2010).
Among the transporting integral membrane proteins are
the P-type ATPases, which actively transport cations across
biological membranes. The P-type ATPases consiituie
a large family of membrane proteins including the
Ca®*-ATPase, the Na*/K*-ATPase, the plant and fungal
H™-ATPases and the heavy-metal-transporting ATPases
(Meller et al. 2010; Kiihlbrandt 2004; Lee and East 2001).
The sarcoplasmic reticulum Ca**-ATPase (SERCA) was
the first of the P-type ATPases for which a 3D structure
was determined by Toyoshima et al. (2000). The structure
of the Ca™*-ATPase in one of its conformations is shown in
Fig. 1. Since the first 3D structure was reported, several
other conformations' of Ca™*-ATPase have also been
resolved (Xu et al. 2002; Toyoshima and Nomura 2002;
Sprensen et al. 2004; Olesen et al. 2004, 2007a; Toyoshi-
ma and Mizutani 2004; Toyoshima et al. 2004, 2007, 2011;
Obara et al. 2005; Sphoel et al. 2006; Jensen et al. 2006:
Moncoq et al. 2007; Takahashi et al. 2007; Laursen et al.
2009; Winther et al. 2010), enabling a structural interpre-
tation of the operation of the pump. Combined with the
vast experimental kinetic and mutagenic data available for
the Ca®*-ATPase, this has led (o a detailed picture of the

" Fonty-five structures have heen deposited in the Protein Data Bank,
with the identification codes IFQU, 1IWO, 1KIU, 1SU4, 1TSS,
ITST, 1WFP, IWPE. IWPG, IXPS. 2AGV. 2BY4, 2CBS, 2C8K,
2CSL, 209M, 2D0QS, 2EAR, 2EAS, 2EAT, 2EAU, 2091, 20A0,
2Z9R, 2ZBD, 2ZBE, 2ZBF, 2ZBG, 3AR2, 3AR3, 3AR4, 3ARS,
3ARG, JART, 3ARS, 3ARY, 3B9B, 3B9R, 3BAG, 3FGO, 3FPB, 3FPS,
3NAL, 3NAM and 3NAN,
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Muscular Contraction and
the Calcium Pump

jelstrup

As was shown by Huxley (1953), Huxley & Niedergerke (1954) and
Huxley & Hanson (1934), the contraction of skeletal muscles is due 1o the
sliding motion of myosin filaments along actin filaments. T]
tion between the filaments is created by cross bridges (Fig. 1) extending
myosin. According to the theory by Huxley (1969), the heads of
the filaments first attach to the actin and then undergo
change whereby the angle of attachment is changed. This then causes a
mavement of the myosin along the actin. The energy for this process is
derived from the hydrolysis of ATP to ADP and inorganic phosphate Pi.
ATP binds to the myo d hydrolysis takes place. The calcium

ions are stored in the sarcoplasmic

nerac-
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exception being osmosis of water) and represent a physical
barrier to transport (Berg et al. 2002; Nelson 2003). Inte-
gral membrane proteins may act as pumps and channels
and enable transport of ions and molecules essential for cell
operation across the membrane with high selectivity (Berg
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reticulum, an organelle made for that
purpose. When the nerve releases
sodium and potassium ions, the surface
of the reticulum depolarizes and the
cal

ns are released into the sarco-

m

plasm around the musele Gbers (Fig. 4
The calcium then binds o the actin,
after which the myosin head also binds

1o the actin. The ADP and the Pi then

detach from the myosin head, which
uses the energy for the conformational
change to shorten the muscle fibre.
When the musele relaxe ATPuse

pumps the calcium jon back t the retic-

ulum, the myosin head detaches from
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[Fig. 1: The top figure illustrates a relaxed muscle fibre and the bottom one a contracted
muscle. The orange lines are myasin and the blue lines are aclin.
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et al. 2002; Nelson 2003; Garrett and Grisham 2010).
Among the transporting integral membrane proteins are
the P-type ATPases, which actively transport cations across
biological membranes. The P-type ATPases consiituie
a large family of membrane proteins including the
Ca®*-ATPase, the Na*/K*-ATPase, the plant and fungal
H™-ATPases and the heavy-metal-transporting ATPases
(Meller et al. 2010; Kiihlbrandt 2004; Lee and East 2001).
The sarcoplasmic reticulum Ca**-ATPase (SERCA) was
the first of the P-type ATPases for which a 3D structure
was determined by Toyoshima et al. (2000). The structure
of the Ca™*-ATPase in one of its conformations is shown in
Fig. 1. Since the first 3D structure was reported, several
other conformations' of Ca™*-ATPase have also been
resolved (Xu et al. 2002; Toyoshima and Nomura 2002;
Sprensen et al. 2004; Olesen et al. 2004, 2007a; Toyoshi-
ma and Mizutani 2004; Toyoshima et al. 2004, 2007, 2011;
Obara et al. 2005; Sphoel et al. 2006; Jensen et al. 2006:
Moncoq et al. 2007; Takahashi et al. 2007; Laursen et al.
2009; Winther et al. 2010), enabling a structural interpre-
tation of the operation of the pump. Combined with the
vast experimental kinetic and mutagenic data available for
the Ca®*-ATPase, this has led (o a detailed picture of the

" Fonty-five structures have heen deposited in the Protein Data Bank,
with the identification codes IFQU, 1IWO, 1KIU, 1SU4, 1TSS,
ITST, 1WFP, IWPE. IWPG, IXPS. 2AGV. 2BY4, 2CBS, 2C8K,
2CSL, 209M, 2D0QS, 2EAR, 2EAS, 2EAT, 2EAU, 2091, 20A0,
2Z9R, 2ZBD, 2ZBE, 2ZBF, 2ZBG, 3AR2, 3AR3, 3AR4, 3ARS,
3ARG, JART, 3ARS, 3ARY, 3B9B, 3B9R, 3BAG, 3FGO, 3FPB, 3FPS,
3NAL, 3NAM and 3NAN,

09.09.2019

@NTNU

UiO ¢ University of Oslo



PorelLab

NTNU-UiO Porous Media Laboratory

P S

{d )y

D SIGNE KJELSTRUP

World Scientific Series in 20th Century Physics — Vol. 17

Contraction and 1parison

m Pump

jelstrup

edergerke (1954) and

54), the contraction of skeleta cles is due 1o the
il interac-
ments is created by cross bridges (Fig 1) extending
ording to 1} by Husley (1969), the heads of
conformational

change then causes a e Ca**-ATPase

e energy for this process is Using the meth-

ic phosphate Pi. es. entropy pro-

welroly s place. The calcium + compare these

sarcoplasmic description of

lle made for that ~ Adjuact Professor Dick Bedeaux mesoscopic pic-
erve releases Degartmant of chomstry Norwegian his gives further
I ions, the surface  Univessity of Science and Technology is less restricted
(NTNU), Trongheim, Norway ariable. We also
dickbedeauxchem.ninu.no

CAS Fellow 2007/2008
hals 10 the actin,
iin head also binds
P and the Pithen  Professor Signe Kjelstrup
in head, which Degatment of chamisry, Norwegian
e conformational  Universit of Sclenos nd Technology
scle fibre. (NTNU), Trondheim, Nomay

signe Kekstupnt anu.no
CAS Group Laader 2007/2008

n back o the re
1 detaches from

les are generally
scules (a notable

of Science
E ——1—
birates a relaxed muscle fibee and the battom one a conlracied
e myasin and the blus lins are actin
»f Technology,

29

NS Z

—
Biophysics in Europe

10n-equilibrium description

2012/ Accepled: 29 February 2012/ Published online: 28 March 2012
012

exception being osmosis of water) and represent a physical
barrier to transport (Berg et al. 2002; Nelson 2003). Inte-
gral membrane proteins may act as pumps and channels
and enable transport of ions and molecules essential for cell
operation across the membrane with high selectivity (Berg
et al. 2002; Nelson 2003; Garrett and Grisham 2010).
Among the transporting integral membrane proteins are
the P-type ATPases, which actively transport cations across
biological membranes. The P-type ATPases consiituie
a large family of membrane proteins including the
Ca®*-ATPase, the Na*/K*-ATPase, the plant and fungal
H™-ATPases and the heavy-metal-transporting ATPases
(Maller et al. 2010; Kiihlbrandi 2004; Lee and East 2001)
The sarcoplasmic reticulum Ca**-ATPase (SERCA) was
the first of the P-type ATPases for which a 3D structure
was determined by Toyoshima et al. (2000). The structure
of the Ca™*-ATPase in one of its conformations is shown in
Fig. 1. Since the first 3D structure was reported, several
other conformations' of Ca™*-ATPase have also been
resolved (Xu et al. 2002; Toyoshima and Nomura 2002;
Sprensen et al. 2004; Olesen et al. 2004, 2007a; Toyoshi-
ma and Mizutani 2004; Toyoshima et al. 2004, 2007, 2011;
Obara et al. 2005; Sphoel et al. 2006; Jensen et al. 2006:
Moncoq et al. 2007; Takahashi et al. 2007; Laursen et al.
2009; Winther et al. 2010), enabling a structural interpre-
tation of the operation of the pump. Combined with the
vast experimental kinetic and mutagenic data available for
the Ca®*-ATPase, this has led (o a detailed picture of the

" Forty-five structures have been deposited in the Protein Data Bank,
with the identification cades IFQU, 1IWO, 1KJU, ISU4, ITSS,
ITST, IVFP. IWPE. IWPG, IXP5, 2AGV, 2BY4, 2088, 208K,
208L, 209M. 2DQS, 2EAR, 2EAS. 2EAT, 2EAU, 209], 20A0,
279R, 2ZBD, 2ZBE, 2ZBF, 2ZBG, 3AR2, 3AR: AR4, 3ARS,
3ARG, 3AR7, 3ARS, 3ARY, 3BYB, 3BIR, 3BA6, 3FGO, 3FPB, 3FPS,
3NAL, 3NAM and 3NAN.
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An Indicator to Evaluate the
Thermodynamic Maturity
of Industrial Process Units
in Industrial Ecology

Anita Zvolinschi and Signe Kjelstrup

Summary

The article suggests a measure to evaluate the thermodynamic
maturity ofindustrial systems at the level of single process units.
The measure can be quantified with reasonable confidence
on the basis of entropy production as defined by irreversible
thermodynamics theory. It quantifies, for one process urit, the
distance between its actual state of operation and its state with
minimum entropy production or optimum exergy efficiency,
when the two states are constrained with a fixed production
capacity of the process unit. We suggest that the minimum
entropy production state is a mature state, or that processes
that aperate at this state are mature. We propose to call the
measure “the thermodynamic maturity indicator” (), and we
define it as the ratio between the minimum entropy produc-
tion and the actual entropy production. We calculated 7 on
the basis of literature data for some examples of industrial
process units in the chemical and process industry (ie. heat
exchanger, chemical reactor, distillation column, and paper dry-
ing machine). The proposed thermodynamic measure should
be of interest for industrial ecology because it emerges from
the entropy preduction rate, a dynamic function that can be
optimized and used to understand the thermodynamic limit
o improving the exergy efficiency of industrial processes. Al-
though not a tool for replacing one process with another or
comparing one technology to another, ¥ may be used to as-
sess actual operation states of single process units in industrial
ecology.

Journal of Industrial Ecology
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exception being osmosis of water) and represent a physical
barrier to transport (Berg et al. 2002; Nelson 2003). Inte-
gral membrane proteins may act as pumps and channels
and enable transport of ions and molecules essential for cell
operation across the membrane with high selectivity (Berg
et al. 2002; Nelson 2003; Garrett and Grisham 2010).
Among the transporting integral membrane proteins are
the P-type ATPases, which actively transport cations across
biological membranes. The P-type ATPases consiituie
a large family of membrane proteins including the
Ca®*-ATPase, the Na*/K*-ATPase, the plant and fungal
H™-ATPases and the heavy-metal-transporting ATPases
(Maller et al. 2010; Kiihlbrandi 2004; Lee and East 2001)
The sarcoplasmic reticulum Ca**-ATPase (SERCA) was
the first of the P-type ATPases for which a 3D structure
was determined by Toyoshima et al. (2000). The structure
of the Ca™*-ATPase in one of its conformations is shown in
Fig. 1. Since the first 3D structure was reported, several
other conformations' of Ca™*-ATPase have also been
resolved (Xu et al. 2002; Toyoshima and Nomura 2002;
Sprensen et al. 2004; Olesen et al. 2004, 2007a; Toyoshi-
ma and Mizutani 2004; Toyoshima et al. 2004, 2007, 2011;
Obara et al. 2005; Sphoel et al. 2006; Jensen et al. 2006:
Moncoq et al. 2007; Takahashi et al. 2007; Laursen et al.
2009; Winther et al. 2010), enabling a structural interpre-
tation of the operation of the pump. Combined with the
vast experimental kinetic and mutagenic data available for
the Ca®*-ATPase, this has led (o a detailed picture of the

" Forty-five structures have been deposited in the Protein Data Bank,
with the identification cades IFQU, 1IWO, 1KJU, ISU4, ITSS,
ITST, IVFP. IWPE. IWPG, IXP5, 2AGV, 2BY4, 2088, 208K,
208L, 209M. 2DQS, 2EAR, 2EAS. 2EAT, 2EAU, 209], 20A0,
279R, 2ZBD, 2ZBE, 1ZBF, 2ZBG, 3AR2, 3AR3, 3AR4, 3ARS,
3ARG, 3AR7, 3ARS, 3ARY, 3BYB, 3BIR, 3BA6, 3FGO, 3FPB, 3FPS,
3NAL, 3NAM and 3NAN.
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Keywords
entropy production Summary
equipartition The article suggests a measure to evaluate the thermodynamic
exergy balance maturity of industrial systems at the level of single process units.
exergy efficiency The measure can be quantified with reasonable confidence
optimization on the basis of entropy production as defined by irreversible
process units
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thermodynamics theary: It quantifies, for one process unit, the
distance between its actual state of operation and its state with
minimum entropy production or optimum exergy efficiency.
when the two states are constrained with a fixed production
capacity of the process unit. We suggest that the minimum
entropy production state is a mature state, o that processes
that operate at this state are mature. We propose to call the
measure “the thermodynamic maturity indicator” (), and we
define it as the ratio between the minimum entropy produc-
tion and the actual entropy production. We calculated 7 on
the basis of literature data for some examples of industrial
process units in the chemical and process industry (ie., heat
exchanger, chemical reactor, distilation column, and paper dry-
ing machine). The proposed thermodynamic measure should
be of interest for industrial ecology because it emerges from
the entropy production rate,  dynamic function that can be
optimized and used to understand the thermodynamic limit
1o improving the exergy efficiency of industrial processes. Al-
though not a tool for replacing one process with another or
comparing one technology to another, x may be used to as-
sess actual operation states of single process units in industrial
ecology.
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Abstract o
We compare three different ways of modelling tray distillation to each other, and to oL
experimental data: the most common way that assumes equilibnum between the liquid he Ca™ " -ATPasq
and vapour phases at the outlets of each tray, and two more precise methods that use Using the meth
the driving forces €8, entropy pro-
Keywords Ll and fluxes of a system in agreement with the second law. It is shown that the methods + compare these
. Summary using irreversible (M 11-Stefas i are superior to the
entropy production method that assumes that equilibnium is reached on each tray. The Soret effect must be H H - =
equipartition The article suggests ameasure to evaluate the thermodynamic included to have a good description of the heat flux N -Eq l b m Th rm dyn m
exergy balance maturity of industrial systems at the level of single process units, 8 A < e = 3 tith o - i o < on u' l nu e o a 'cs
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distance between its actual state of operation and its state with
minimum entropy production or optimum exergy efficiency,
when the two states are constrained with a fixed production
capacity of the process unit. We suggest that the minimum
entropy production state is a mature state, o that processes
that operate at this state are mature. We propose to call the
measure “the thermodynamic maturity indicator” (), and we
define it as the ratio between the minimum entropy produc-
tion and the actual entropy production. We calculated 7 on
the basis of literature data for some examples of industrial
process units in the chemical and process industry (ie., heat
exchanger, chemical reactor, distilation column, and paper dry-
ing machine). The proposed thermodynamic measure should
be of interest for industrial ecology because it emerges from
the entropy production rate,  dynamic function that can be
optimized and used to understand the thermodynamic limit
1o improving the exergy efficiency of industrial processes. Al-
though not a tool for replacing one process with another or
comparing one technology to another, x may be used to as-
sess actual operation states of single process units in industrial
ecology.
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Distillation is the most common separation
method: It accounts for 11 % of the industrial
energy demand in the USA in 1991 (Humphrey
and Siebert 1992). Since industnial scale
experiments are dem and expensive,
distillation models are useful for design of
distillation columns Tray distillation is most
commonly modelled by assuming  that
equilibrium is established between the vapour
end the liquid at the outlets of each tray in the
column. However, in reality equilibrium is not
reached The first attempt to account for the
irreversble natwe of the process was to
introduce tray efficiencies. The Murphree
efficiency measwes to which degree equilibrium
is reached (King 1980). The Murphree efficiency
has been used to descbe distillation with some
success for binary mixtures at steady state. The
method brakes down for multi-component
systems or for dynamic behaviour. Moreover, the
Muwplree efficiency provides no physical
explenation for why equilibrium is not reached
Descriptions  that  introduce  such
explenstions have their origin in imeversible
thermodynamics (Kuiken 1994, Forland et al

*Author to whom comnespondence should be addressed

2001, Demirel and Sandler 2001). In irreversible
thermodynamics the fluxes and forces of the
system ere derived in & systematic way. All
possible coupling effects can be included, or
discarded, within a fremework that complies
with the second law. The pioneering articles, in
that isreversible thermodynamics wes spplied to
distillation, were written by Krishnemusthy end
Taylor (19858, 19850). These authors modelled
d@istilletion by meens of driving forces end
trensfer rates without the essumption of
equilibrium between the liqud and the vapor at
the outlets of a tray. Interestingly, the suthors did
not expect the results to be that good at fisst try
The trensfer rates were formulated using
Mexwell-Stefan equations, and this approach is
therefore called the Meaxwell-Stefen approach
from now on Research using this epproach is
now described in books (Taylor and Krishna
1993, Perry and Green 1997, Seader and Henley
1998) and reviewed by Krishna and Wesselingh
(1997). The increased computing capacity and
speed has helped to develop the Macwell-Stefan
epproach

Instead of assuming equilibrium between
the liquid and vapour at the outlets of each tray,
in the Mexwell-Stefen approach one a
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Electrokinetic

lots and lots

1. Introduction

Electrokinetic effects in porous materials and membranes arise
due to the coupling between the movement of ions and solvent. In
eg water such a coupling can be explained and modelled by
electrostatic interactions between charged ions and polar water
molecules. Electrokinetic effects can be utilised for direct conver-
sion of potential or kinetic energy (e.g. Pressurised liquids and
gases) into electrochemical energy or vice versa [1]. This is

y b

values of the elecktrokinetic figure-of-merit [1,2.24] have shown
that efficiency of about 20% can be obtained in commercial Nafion
membranes and it is increasing with temperature.

Up to now all theoretical studies of electrokinetic energy
conversion have only considered incompressible fluids and in
particular aqueous solutions, However, gas phase electrokinetic
energy conversion is possible too and the potential applications
are electrochemical gas compression or power generation (expan-
der). Some experimental works have been reported of

potentially attractive for many 2| suchas

chemical of H, through a membrane |25

pumps, gas compressors for cooling cycles, small generators in e.g.
domestic compressed air energy storage 3] or heat engines eg.
organic Rankine cycles [4

The Saxén relations have been known since long, but specific
studies of electrokinetic energy conversion were done first in the
1960s by Osterle and co-workers |1,5] and Burgreen and Nakache
6.7). They predicted a maximum first law efficiency () of the
order 1-3% and up to 17%, respectively. During the past decade
renewed interest in this topic has emerged; and most reports
focus on the transport properties of straight nanochannels with
well-defined dimensions [8-23). Recently [2.24], experimental

* Corresponding author.

E-mail address: by k (A. Bentien,

0376-7388/c 2015 Elsevier BV. Al rights reserved.

focus on high pressure liquefaction of H.. Electrochemical gas

in r cooling is described
in the patent literature, eg. Refs. [30-32]. None of the patents
disclose technical details or theoretical considerations with res-
pect to e.g. efficiency and power density.

Fig. | gives a schematic illustration of electro-osmosis with
liquid (left) and gas reservoirs (right). In the first case, an ion, say
Li*, migrates through the membrane due to an external electric
potential (¢) difference. Each Li* couples with a number of water
molecules, that are quantified by the water transport number

t,). In popular terms one may say that Li* is dragging or
pumping water through the membrane as it is moving in the
electric field.

Alternatively, a gas phase can supply the conducting ion by gas
oxidation and subsequent reduction on the two membrane sides.
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distillation, were written by Krishnemusthy end
Taylor (1985s, 1985b). These suthors modelled
dstillation by meens of diiving forces and
transfer rates without the assumption of
equilibrivm between the liqud and the vapor at
the cutlets of a tray. Interestingly, the authors did
not expect the results to be that good at fisst try.
The transfer rates were formulated using
Mexwell-Stefan equations, and this approach is
therefore called the Maxwell-Stefon approach
from now on Research using this approach is
now described in books (Taylor end Ksishna
1993, Petry and Green 1997, Seader and Henley
1998) and reviewed by Krishna and Wesselingh
(1997). The increased computing capacity and
speed has helped to develop the Macwell-Stefan
approach

Instead of assuming equilibrium between
the liquid and vapour at the outlets of each tray,
in the Maxwell- Stefan approach one a
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Dealing with thermodynamics @ Porelab

NTNU-UiO Porous Media Laboratory

Perhaps, after all, the wise man's attitude towards thermodynamics should be
to have nothing to do with it. To deal with thermodynamics is to look for
trouble. This is not the citation of a famous scientist, but the result of a deep
cogitation following mere observations. Why do we need to get involved in
a field of knowledge which, within the last hundred years, has exhibited the
largest number of schizophrenics and megalomaniacs, imbalanced scientists,
paranoiacs, egocentrists, and probably insomniacs and sleepwalkers?

Gérard A. Maugin,
The Thermodynamics of Nonlinear Irreversible Behaviors
(World Scientific, Singapore, 1999)
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Three Laws of Thermodynamics

1.dE=TdS + dW.
2.dS > 0.
3.S—>0asT—0.

09.09.2019 ONTNU

@ UiO : University of Oslo 22



@ PorelLab

NTNU-UiO Porous Media Laboratory

Three Laws of Thermodynamics

1. You cannot win.
2.You cannot break even.
3. You cannot leave the game.
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A Monte Carlo Algorithm for Immiscible Two-Phase
Flow in Porous Media
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Non-isothermal Transport of
Multi-phase Fluids in Porous Media.
The Entropy Production
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Relations Between Seepage Velocities in Immiscible,
Incompressible Two-Phase Flow in Porous Media
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Core idea of thermodynamics:

Euler homogeneous functions and energy conservation
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Core idea of thermodynamics:
Euler homogeneous functions and energy conservation

Vi = V + 5y f;‘r"_" — Vm)

1'1r"_ﬂ;|-1 =V — l_'.’-;u'__l|.i1'1r"_IF - v]-n:]

& 3 UiO 2 University of Oslo 29

09.09.2019 EONTNU



@ PorelLab

NTNU-UiO Porous Media Laboratory

«Thermodynamics»

1'1r'rw =V _|_ Sn_ {;1'“' _ v}n)

1'1r"-ﬂ;|-1 = vV — Sul{‘r‘rl, - v]-ﬂ_:]

A

I Co-moving velocity
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Mass conservation

Vg =V + Sﬂ, {V’ — ’5-’”1)

\_."ﬂ. = VvV — S?-LI{"_.-" - -‘iln'r]-ﬂ_:]
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Mass conservation

a5,
98,
Vo =V + S:r?, f;v" _ Vm) It + V. vpSy =0
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Constitutive Equations
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I Where relative permeability is ok.
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