@NTNU

Norwegian University of
Science and Technology

NTNU-UiO Porous Media Laboratory UiO ¢ University of Oslo

Thermodynamics of single molecule stretching
Eivind Bering!, Signe Kjelstrup?, Dick Bedeaux?, Miguel Rubi2, Astrid de
Wijn*

Lporel.ab/Department of Physics, NTNU
2poreLab/Department of Chemistry, NTNU

3Departament de Fisica Fdnamental, Universitat de Barcélona
4Department of Mechanical and Industrial Engineering, NTNU

August 30, 2019



5
PorelLab Modtivation

NTNU-UIO Porous Media Laboratory

e Do thermodynamics apply to small systems?

e Many oppose that a e.g. Gibbs-Duhem relationship is applicable for
single molecular systems!

e May have a large fundamental impact on how one can describe
biomolecular and other events related to energy conversion on the
small scale.

e The aim of the project is to verify the rate laws presented by Rubi et al.?

!David Keller, David Swigon, and Carlos Bustamante. “Relating Single-Molecule
Measurements to Thermodynamics”. In: Biophysical Journal 84.February (2003),
pp. 733-738.

2) M Rubi, D Bedeaux, and S Kjelstrup. “Thermodynamics for Single-Molecule Stretching
Experiments”. In: Journal of computational chemistry 110.25 (2006), pp. 12733-12737.
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e Conclusion
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The rate laws

There is a friction coefficient associated with an increment of either
stretching velocity v or the constraining force f.

In the Helmholtz ensemble (length controlled)

A.f = 5[ (l)’l),

and in the Gibbs ensemble (force controlled)

Af =E&(f)v.



Hill’'s theory for small system
PoreLab 1.3
thermodynamics

e An equilibrium description of thermodynamic properties on the
nano-scale.

¢ The thermodynamic functions cease to be extensive at this length scale.

¢ Hill introduced an ensemble of small systems, and used the replica
energy to obtain thermodynamic properties that depended on the
surface area and curvatures.

e The choice of ensemble will affect the thermodynamic potentials for
small systems.

STerrell L. Hill. Thermodynamics of Small Systems. New York: W.A. Benjamin Inc, 1963,
p. 210.
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Polyethylene oxide (PEO)

e |tis studied extensively experimentally.

e Applications ranging from industrial manufacturing to medicine.

e A better understanding of the mechanical properties of PEO on the
nano-scales is needed.
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Breaking of bundles

Previous work
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10 nm
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Dissociation Energ

"""""""""""""""" S— —

¢ United atom force field
e Stretching, bending, torsion
e Langevin thermostat at T=200 K

D, |D,

Energy

A
Internuclear Separation (r)

14
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Two ensembles

Helmholtz ensemble (isometric)

Gibbs ensemble (isotensional)

15



@ Model validation using the entropic
<l Porelab regime

The entropy in the molecule is given by

S(1) — So = —oksl2/ B2 (3)
giving rise to an entropic force f; of
a(S()T
fo= 2O _ gy g2 (@

In the entropic region the molecule follows a random walk in three
dimensions. If we let the molecule be composed of N independent units
of length b, the radius of gyration reads

lext (5)

V6N

where [, = N b is length of the fully extended molecule.

R, =

16



@ Model validation using the entropic
<l Porelab regime

This gives an effective entropic force of

fo 18kg TIN
S — l2

ext

(6)

The number of independent units depends on the system size, whereas the
effective length b ¢ should be size independent.

17



a3 Model validation using the entropic
<l Porelab regime
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a3 Model validation using the entropic
<l Porelab regime
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Estimation of free energy

For the isometric simulations, there is a fluctuating force for each length. If

we let B
(f)) = f), (7)
the Helmholtz energy is given by
l
A(l) = / fHar. (8)
lo
For the isotensional simulations there is a fluctuating length for each force. If
we let ~
(1) f =1U0f), (9)

the Gibbs free energy is given by

o
G(f) = /f 1), (10)

20
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Estimation of free energy

In the thermodynamical limit A and G are related by a Legendre
transformation, and with Al = — [y and Af = f(I) — f(l,) one has

A+ G(f = f(1)) = AFAL (11)

for sufficiently large systems®.

4J M Rubi, D Bedeaux, and S Kjelstrup. “Thermodynamics for Single-Molecule Stretching

Experiments”. In: Journal of computational chemistry 110.25 (2006), pp. 12733-12737.
21



=l PoreLab Estimation of free energy

In the thermodynamical limit A and G are related by a Legendre
transformation, and with Al =1 — [y and Af = f(I) — f(ly) one has

A +G(f = f(I)) = AfAl (11)

for sufficiently large systems®*.

Let us investigate how this is for a PEO chain of N = 51 units.

4J M Rubi, D Bedeaux, and S Kjelstrup. “Thermodynamics for Single-Molecule Stretching

Experiments”. In: Journal of computational chemistry 110.25 (2006), pp. 12733-12737.
21
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Force-elongation

[, [ (nN)

10

29



£
mu-u.o ParPoPME.dgL!:gtory FO rce'e I 0 n gatio n
5
1 .
Isometric
4 - Isotensional
—_ 3 L
E 0.5
o
w2 e, e
- *
0"
1F 50
0




Estimation of free energy
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Estimation of free energy
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Entropy production

When changing the controlled force from f to f. .+, the entropy production
have previously been shown to be”

ds 1 dl
E:T<fewt_f>a (12)

With Af = f..., — f, the resulting force controlled rate law is

Af =41 S =415, (13

where §f=§f(f) is the isotensional friction coefficient and v the resulting
average stretching velocity.

5) M Rubi, D Bedeaux, and S Kjelstrup. “Thermodynamics for Single-Molecule Stretching

Experiments”. In: Journal of computational chemistry 110.25 (2006), pp. 12733-12737.
96
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Entropy

The entropy production associated with increasing the length of the
molecule at a constant velocity v = % is given by

Y e~ DY =000, (19

and with Af = fem - fas the velocity induced force change, the length
controlled rate law is

Af=¢&(l ) =& (Dv, (15)

27
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Force controlled rate law

Our first aim is to determine the force controlled rate law:

Af=E&p(f)o. (16)

The samples are equlilibrated for 5 ns at a fixed force before the force is
increased by a step of A f

28
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Force controlled rate law

Our first aim is to determine the force controlled rate law:

Af=E4(f)o. (16)

The samples are equlilibrated for 5 ns at a fixed force before the force is
increased by a step of A f

Let us look at a the average length as a function of time for samples
equlilibrated at f; = 0.67 nN when we increase the force by 8% at ¢t = 0.

28



Force controlled simulations:

]
w Porelab Af=&(f)v
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Force controlled simulations:

Af =& (f)v
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Force controlled simulations:
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Force controlled simulations:

]
w Porelab Af=&(f)v
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Lenght controlled rate law

Our next aim is to determine the length controlled rate law:
Af =& (. (17)

The samples are equlilibrated for 5 ns at a fixed length before the length is
increased at a constant velocity.

33
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Lenght controlled rate law

Our next aim is to determine the length controlled rate law:
Af =& (). (17)

The samples are equlilibrated for 5 ns at a fixed length before the length is
increased at a constant velocity.

Let us look at a the average force as a function of time for samples
equlilibrated at /) = 52 A when we stretch the molecule at a constant
velocity v = 4 m/s fromt = 0.

33
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length controlled simulations:

f (nN)
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length controlled simulations:

f (nN)
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length controlled simulations:

Sl PoreLab Af=&(Dw
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Friction coefficents
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Entropy production at v = 14 m/s

£(10712 kg/s)
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Conclusion

e Nanometric chains of PEO have been analyzed in the Helmholtz and
Gibbs ensemble by non-equilibrium molecular dynamic simulations.

6J M Rubi, D Bedeaux, and S Kjelstrup. “Thermodynamics for Single-Molecule Stretching

Experiments”. In: Journal of computational chemistry 110.25 (2006), pp. 12733-12737.
40
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e Nanometric chains of PEO have been analyzed in the Helmholtz and
Gibbs ensemble by non-equilibrium molecular dynamic simulations.

e On this length scale, the thermodynamic potentials are ensemble
dependent

e They still tell a coherent story in agreement with the rate laws
presented by Rubi et al.®

6J M Rubi, D Bedeaux, and S Kjelstrup. “Thermodynamics for Single-Molecule Stretching

Experiments”. In: Journal of computational chemistry 110.25 (2006), pp. 12733-12737.
40
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Conclusion

e Nanometric chains of PEO have been analyzed in the Helmholtz and
Gibbs ensemble by non-equilibrium molecular dynamic simulations.

e On this length scale, the thermodynamic potentials are ensemble
dependent

e They still tell a coherent story in agreement with the rate laws
presented by Rubi et al.®

¢ A thermodynamic description is meaningful also on the small scale.

6J M Rubi, D Bedeaux, and S Kjelstrup. “Thermodynamics for Single-Molecule Stretching

Experiments”. In: Journal of computational chemistry 110.25 (2006), pp. 12733-12737.
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