

Norwegian Centre of Excellence

Norwegian University of Science and Technology

Impact of gravity on pore-scale steady-state flow patterns

Fredrik K. Eriksen, PoreLab Oslo

09.09.2019

Introduction

Steady-state, simultaneous two-phase flow in porous media: An experimental study

University of Oslo Ken Tore Tallakstad Marion Erpelding Grunde Løvoll Henning Arendt Knudsen Olav Aursjø Eirik Grude Flekkøy Knut Jørgen Måløy

University of Strasbourg Renaud Toussaint

NTNU Trondheim Alex Hansen Santanu Sinha Thomas Ramstad

Experimental setup

- Quasi-2-D porous medium
- Wetting fluid: 85 % Glycerol – 15 % Water
- Non-wetting fluid: Air

Typical evolution of experiments

Early transient regime, initial drainage

Front: Transient regime

Behind: Steady-state regime

Ca = 0.0079

Fully developed steady-state regime

Steady state experiments

Fast experiment.

10 times real time, Ca = 0.090

10cm x 15 cm section in the middle of the model.

Non-wetting phase:

- Trapped clusters
- Mobile clusters
- Dynamic coalescence and fragmentation

Wetting phase:

- Flows through narrow channels between non-wetting clusters

Steady state experiments

Slow experiment.

120 times real time, Ca = 0.0079

10cm x 15 cm section in the middle of the model.

Non-wetting phase:

- Trapped clusters
- Mobile clusters
- Dynamic coalescence and fragmentation

Wetting phase:

 Flows through narrow channels between non-wetting clusters

Background

In a given steady-state regime, parameters such as the pressure drop, non-wetting cluster size distribution and saturation are found to be statistically stable

7

Background

 $p(s) \propto s^{-\tau} \exp(-s/s^*),$

 $\tau = 2.0 \pm 0.2$

Tallakstad et al. PRE 80, 036308 (2009)

09.09.2019

Background

Assumption: Flow restricted to narrow channels separated a distance corresponding to the characteristic cluster size.

$$Q = q \cdot N = a^2 \cdot \frac{a^2}{\mu} \frac{\Delta P}{L} \cdot \frac{L}{l^*}$$
$$N = L/l^*$$

$$\propto Q^{1/2} \propto C a^{1/2}$$
 Theorem

Balance between viscous pressure and capillary threshold.

$$I^* \; \frac{\Delta P}{L} = \Delta P_c = P_d - P_i$$

ry by Eirik G. Flekkøy

 $l^* \propto s^{*eta_i}, \ eta_i = 0.57 \pm 0.05$

 ΔP

Summary – horizontal experiments

 $\Delta P_{ss} \propto \mathrm{Ca}^{\beta}$ $\beta = 0.54 \pm 0.08$

$$p(s) \propto s^{-\tau} \exp(-s/s^*),$$

$$s^* \propto Ca^{-\zeta},$$

$$\zeta = 0.98 \pm 0.07.$$

The steady-state pressure drop scales as the square root of the Ca-number: the effective permeability increases with Ca

The cluster size distribution follows a power law with an exponential cutoff: s* = cutoff cluster size

s* is decreasing with increasing flow rate / Canumber

Summary – horizontal experiments

What happens when we introduce gravity?

 $\Delta P_{ss} \propto \mathrm{Ca}^{\beta}$ $\beta = 0.54 \pm 0.08$

$$p(s) \propto s^{-\tau} \exp(-s/s^*),$$

$$s^* \propto Ca^{-\zeta},$$

$$\zeta = 0.98 \pm 0.07.$$

The steady-state pressure drop scales as the square root of the Ca-number: the effective permeability increases with Ca

The cluster size distribution follows a power law with an exponential cutoff: s* = cutoff cluster size

s* is decreasing with increasing flow rate / Canumber

Current experiments, introducing gravity

Beginning of an experiment

Summary:

Cell dimensions = 80 x 40 cm

Non-deformable porous monolayer: 1 mm glass beads

Tilting angle: 0 to 45 degrees

15 fluid inlets: 8 liquid, 7 air

8 Pressure sensors

Nikon D7200 camera: 4000x6000 pixels, time lapse images

Cell is tilted 45 degrees

Impact of gravity on steady-state flow experiments

We set a constant flow rate and cell tilting angle

Have conducted 12 initial experiments:

- 3 capillary numbers: Ca = 3.52e-3, 8.8e-3, 8.8e-2
- 4 tilting angles: $\theta = 0^{\circ}, 15^{\circ}, 30^{\circ}, 45^{\circ}$
- Fluid pair: 85 % Glycerol 15 % water (wetting) Air (non-wetting)

Cell is tilted 45 degrees

PoreLab NTNU-UIO Porous Media Laboratory

Pressure drop across cell – time evolution

PoreLab NTNU-UIO Porous Media Laboratory

Impact of gravity on the Pressure drop

Impact of gravity on the Pressure drop

Gravity has an influence at higher flow rates

Effective permeability increases with gravity

Impact of gravity on the Pressure drop

Gravity has an influence at higher flow rates

Effective permeability increases with gravity

$$\begin{split} \frac{Q_w}{A} &= -\frac{\kappa_{eff}}{\mu_w} \nabla P = \frac{\kappa_{eff}}{\mu_w} \frac{\Delta P_{ss} - \Delta P_h}{L} \\ & \downarrow \\ \kappa_{eff} &= \frac{\mu_w Q_w L}{(\Delta P_{ss} - \Delta P_h)A} \\ Bo &= \frac{\Delta \rho g a}{\gamma} \sin(\theta), \quad \Delta \rho = \rho_w - \rho_{nw} \end{split}$$

PoreLab

Impact of gravity on the Pressure drop

Pressure data summary

Low flow rate experiments:

The steady state pressure drop increases with the hydraulic pressure of the wetting fluid

-> gravity does not seem to impact the effective permeability (wetting phase)

Medium and High flow rate experiments:

The steady state pressure drop increases less with Ca-number for higher tilting angle than the hydraulic pressure drop of the wetting fluid -> gravity increases the effective permeability (wetting phase)

What do we expect from the images?

- Low Ca: no change in the cluster sizes with tilting angle?
- Medium & high Ca: Smaller clusters for increased tilting angle?
- Elongated clusters, or more mobile clusters, for higher tilt and Ca-number?

Image processing

Image processing

Image processing

23

 $p(s) \propto s^{-\tau} \exp(-s/s^*)$

Tallakstad et al. PRE 80, 036308 (2009)

1. s* in the fast experiment more or less constant

2. Do not see $s^* \propto Ca^{-\zeta}$

Reproducible?

Impact of gravity on air cluster size

09.09.2019

50

Ca = 8.80e-3 Gray: Immobile > 30 min

Cluster mobility

θ = 15°

Top and middle rows: 1 s in video = 20 min in real time Bottom row: 1 s in video = 3 min in real time

$$I^* \; \frac{\Delta P}{L} = \Delta P_c = P_d - P_i$$

Mobile clusters decrease in size when Ca and tilting angle increases

Amount of mobile clusters increase when Ca and tilting angle increases

Norwegian University of Science and Technology

Thanks for your attention!

Norwegian Centre of Excellence

Norwegian University of Science and Technology

Thanks for your attention!

Finding the steady-state pressure drop

PoreLab

Impact of gravity on the Pressure drop

Pressure drop across cell – time evolution

Pressure drop across cell – time evolution

Why not? $s^* \propto \mathrm{Ca}^{-\zeta}$

Reproducible?

Impact of gravity on air cluster size

09.09.2019

(1)
$$\operatorname{Ca} = \frac{\mu_w Q_w a^2}{\gamma \kappa_0 A}$$

(2) $|\nabla P| l^* = \Delta P_L \frac{l^*}{L} = \bar{P}_t$
(3) $V_{dis} = LA_{dis} = La^2 \frac{W}{l^*} = \frac{aN}{l^*}$

Ca – pressure theory

Since the overall interface area between the wetting and nonwetting phase is fluctuating around a constant value in steady-state, changes in the potential energy stored in the interfaces do not contribute to the average dissipation, and we are justified in writing

$$Q_{tot}\Delta P_L = D_f = -\int_{V_{dis}} dV u |\nabla P| = \frac{\mu_w}{\kappa_0} \int_{V_{dis}} dV u^2 , \qquad (4)$$

where we have applied Darcy's law locally, in the dissipative part of the wetting fluid. Taking the local Darcy velocity $u = (Q_w/A)(V/V_{dis})$ as a constant, and using Eqs. (3), (1) and (2) respectively we obtain

$$\Delta P_L = \frac{8\gamma V l^*}{15a^3 A} \text{Ca} \quad \Rightarrow \quad |\nabla P|^2 = \frac{8\gamma \bar{P}_t}{15a^3} \text{Ca} , \quad (5)$$

i.e. $|\nabla P| \propto \sqrt{\text{Ca}}$, consistent with the exponent β in

PoreLab