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Two-fluid flow in porous media

• In a common approach, we use  𝑘𝑟𝛼 𝑆𝛼 and 
macroscopic 𝑃𝑐 𝑆𝑤 .

𝑣𝛼 = −
𝑘𝑟𝛼 𝑆𝛼 𝑘

𝜇𝛼
𝛻𝑝𝛼, 𝛼 = 𝑤, 𝑛

𝑃𝑐 𝑆𝑤 = 𝑃𝑛 − 𝑃𝑤

• Pore scale phenomena affect the 𝑘𝑟 and 
macroscopic flow.

• However, they are not well represented in the 
common approach (for ex. dependency of 𝑘𝑟
on microscopic flow regimes).

Ref. PetroWiki

Darcy (1856), Wycoff & Botset (1936), Leverett (1941), Avraam and Payatakes (1995) 

Ref. PetroWiki
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Recent advances in imaging

• From black-box coreflooding to fast X-ray micro-tomography

core sample

injection production

pressure 
measurement
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Intrinsic volumes in integral geometry

• For a 3D set of objects 𝐾, 𝑉0 K − 𝑉3 K denote the 
intrinsic volumes.

• Example of 𝐾: an assembly of fluid clusters 

• 𝑉0 K = 𝑉 K

• 𝑉1 K = 𝐴 K = ∫𝛿𝐾𝑑𝐴

• 𝑉2 K = 𝐻 K =
1

2
∫𝛿𝐾 𝜅1 + 𝜅2 𝑑𝐴

• 𝑉3 K =
1

4𝜋
χ K =

1

4𝜋
∫𝛿𝐾𝜅1𝜅2𝑑𝐴

𝐾
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Characterization theorem in integral geometry

• Under certain conditions, a function 𝜇 on 𝐾 can be 

written as a linear combination of intrinsic volumes of 𝐾
(Hadwiger 1975).

µ K =  

𝑖=0

𝑛

𝑐𝑖𝑉𝑖 K

𝐾
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Free energy (F) of a fluid

• F of a fluid confined by a complex boundary fulfills the 

requirements of the Hadwiger theorem. 

• Therefore, F can be described by a linear combination 

of intrinsic volumes (Mecke & Arns 2005).

Mecke & Arns 2005

𝐹 K =  

𝑖=0

𝑛

𝑐𝑖𝑉𝑖 K
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Free energy of a 2-fluid flow system

(by integral geometry)

bulks (α, β, s) interfaces (αβ, αs, βs) contact lines (αβs)

Interfaces and lines 

have volume.

Kαβ

interfacial 

thickness (𝜀)

𝐹 = 𝐹𝑠 + 𝐹𝛼 + 𝐹𝛽 − 𝐹𝛼𝛽 − 𝐹𝛼𝑠 − 𝐹𝛽𝑠 + 𝐹𝛼𝛽𝑠
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Dependencies of intrinsic volumes

set intrinsic volumes

𝑲𝜶 𝑉𝛼, 𝐴𝛼, 𝐻𝛼 and χ𝛼

𝑲𝜷 𝑉𝛽, 𝐴𝛽, 𝐻𝛽 and χ𝛽

𝑲𝒔 𝑉𝑠, 𝐴𝑠, 𝐻𝑠 and χ𝑠

𝑲𝜶𝜷 𝑉𝛼𝛽, 𝐴𝛼𝛽, 𝐻𝛼𝛽 and χ𝛼𝛽

𝑲𝜶𝒔 𝑉𝛼𝛽 , 𝐴𝛼𝑠, 𝐻𝛼𝑠 and χ𝛼𝑠

𝑲𝜷𝒔 𝑉𝛽𝑠, 𝐴𝛽𝑠, 𝐻𝛽𝑠 and χ𝛽𝑠

𝑲𝜶𝜷𝒔 𝑉𝛼𝛽s, 𝐴𝛼𝛽s, 𝐻𝛼𝛽s and χ𝛼𝛽s

𝐹

= 𝐹𝑠 +  
𝑖=0

3

𝑐𝑖𝛼𝑉𝑖𝛼 +  
𝑖=0

3

𝑐𝑖𝛽𝑉𝑖𝛽

−  
𝑖=0

3

𝑐𝑖𝛼𝛽𝑉𝑖𝛼𝛽 −  
𝑖=0

3

𝑐𝑖𝛼𝑠𝑉𝑖𝛼𝑠

−  
𝑖=0

3

𝑐𝑖𝛽𝑠𝑉𝑖𝛽𝑠 +  
𝑖=0

3

𝑐𝑖𝛼𝛽𝑠𝑉𝑖𝛼𝛽𝑠

𝐹 = 𝐹𝑠 + 𝐹𝛼 + 𝐹𝛽 − 𝐹𝛼𝛽 − 𝐹𝛼𝑠 − 𝐹𝛽𝑠 + 𝐹𝛼𝛽𝑠
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Dependencies of intrinsic volumes

• Simplifications (area)

• Only 2 of (𝐴𝛼, 𝐴𝛽, 𝐴𝛼𝑠, 𝐴𝛽𝑠, 𝐴𝛼𝛽) are independent.

 

𝐴𝛼 − 𝐴𝛽 + 𝐴𝑠 = 𝐴𝛼𝑠

𝐴𝛽 − 𝐴𝛼 + 𝐴𝑠 = 𝐴𝛽𝑠

𝐴𝛼 + 𝐴𝛽 − 𝐴𝑠 = 𝐴𝛼𝛽
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Simplifications (interfaces)

𝑉0𝛼𝛽 = 𝒪 𝜀 , 𝜀 → 0

𝑉1𝛼𝛽 = 𝐴𝛼𝛽

𝑽𝟐𝜶𝜷 = 𝑉2𝛼𝛽,𝑙𝑒𝑓𝑡 + 𝑉2𝛼𝛽,𝑟𝑖𝑔ℎ𝑡 + 𝑉2𝛼𝛽,𝑙𝑖𝑛𝑒 = +
1

4𝜋2 ∫𝛿𝐾𝛼𝛽𝑠

1

𝑅1
+

1

𝑅2→∞
𝑑𝐴 =

1

4𝜋2 ∫𝛿𝐾𝛼𝛽𝑠

𝑑𝐴

𝑅1
=

1

4𝜋2 ∫𝐿𝛼𝛽𝑠

𝜋
𝜀

2
𝑑𝐿
𝜀

2

=
𝟏

𝟒𝝅
𝑳𝜶𝜷𝒔

𝑉3𝛼𝛽 = χ𝛼𝛽

Kαβ

interfacial thickness (𝜀)

Dependencies of intrinsic volumes
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Simplifications (contact lines)

𝑉0𝛼𝛽𝑠 = 𝒪 𝜀2 , 𝜀 → 0

𝑉1𝛼𝛽𝑠 = 𝒪 𝜀 , 𝜀 → 0

𝑉2𝛼𝛽𝑠 =
1

4𝜋2 ∫𝛿𝐾𝛼𝛽𝑠

1

𝑅1
+

1

𝑅2→∞
𝑑𝐴 =

1

4𝜋2 ∫𝛿𝐾𝛼𝛽𝑠

𝑑𝐴

𝑅1
=

1

4𝜋2 ∫𝐿𝛼𝛽𝑠

2𝜋
𝜀

2
𝑑𝐿

𝜀

2

=
1

2𝜋
𝑳𝜶𝜷𝒔

𝑉3𝛼𝛽𝑠 = ∫𝛿𝐾𝛼𝛽𝑠

1

𝑅1 𝑅2→∞
𝑑𝐴 = 0

line thickness (𝜀)

Dependencies of intrinsic volumes
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Dependencies of intrinsic volumes

• F is a function of 7 intrinsic volumes:

• Under extreme wetting conditions:

 𝐹 =  𝐹0 +  𝑐0𝑆𝛼 +  𝑐1𝛼
 𝐴𝛼 +  𝑐2𝛼

 𝐻𝛼 +  𝑐3𝛼 χ𝛼 +  𝑐1𝛽
 𝐴𝛽 +  𝑐3𝛽 χ𝛽 +  𝑐3𝛼𝛽𝑠

 𝐿𝛼𝛽𝑠

 𝐹 =  𝐹0 +  𝑐0𝑆𝑛 +  𝑐1𝑛
 𝐴𝑛 +  𝑐2𝑛

 𝐻𝑛 +  𝑐3𝑛 χ𝑛
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Free energy (F) of a 2-fluid flow system

(by thermodynamics)

𝑑𝑉𝑤 = −𝑑𝑉𝑛

𝑑𝑊𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = 𝑃𝑤𝑑𝑉𝑤 + 𝑃𝑛𝑑𝑉𝑛 = 𝑃𝑤 − 𝑃𝑛 𝑑𝑉𝑛 = 𝑃𝑐𝑑𝑉𝑛 = 𝜙𝑉𝑃𝑐𝑑𝑆𝑛

𝑑𝑊𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = 𝑑𝐹 + 𝑑𝐸𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑒𝑑

∆𝐹 = 𝜙𝑉  𝑃𝑐𝑑𝑆𝑛 + 𝐸𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑒𝑑
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Efficiency (E)

Imbibition 𝐸𝐼 = −
𝑑𝑊

𝑑𝐹
= 𝜙𝑉𝑃𝑐

𝑑𝑆𝑤

𝑑𝐹

Drainage 𝐸𝐷 =
𝑑𝐹

𝑑𝑊
= −

1

𝜙𝑉𝑃𝑐

𝑑𝐹

𝑑𝑆𝑤

Imbibition

Drainage
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Efficiency (E)

• According to Morrow (1970), the 

imbibition had an efficiency of 

92.5%, whereas the drainage had 

a lower efficiency.

Imbibition

Drainage

∆  𝐹 ≃ −0.925  𝑃𝑐𝑑𝑆𝑤
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Free energy (F) for spontaneous 

imbibition (SI)

𝑅2 = 0.993
• Linear regression of 330 data 

points for five SI with 

macroscopic capillary number 

of 10-10 showed a good fit.

• Efficiency of 1 had similar 

results.

• ∆  𝐹 𝑆𝑛 = 0.925 ∫𝑆𝑖

𝑆𝑛 𝑃𝑐𝑑𝑆𝑛

• ∆  𝐹 𝑆𝑛 =  𝑐0𝑆𝑛 +  𝑐1𝑛
 𝐴𝑛 +  𝑐2𝑛

 𝐻𝑛 +  𝑐3𝑛 χ𝑛 +  𝑐1𝑤
 𝐴𝑤 +  𝑐3𝑤 χ𝑤 +  𝑐3𝑛𝑤𝑠

 𝐿𝑤𝑛𝑠 −  𝐹𝑖
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Efficiency for a PD-MI-MD experiment

• 1-1 lines represent no 
dissipation.

• Early PD and MD have less 
dissipation (fewer irreversible 
processes, e.g. Haines 
jumps).

• Late PD and MD show a 
decrease in F when external 
work is applied.

𝑊 =  
𝑆𝑖

𝑆𝑛

𝑃𝑐𝑑𝑆𝑛

 𝐹 𝑆𝑛 =  𝑐0𝑆𝑛 +  𝑐1𝑛
 𝐴𝑛 +  𝑐2𝑛

 𝐻𝑛 +  𝑐3𝑛 χ𝑛 +  𝑐1𝑤
 𝐴𝑤 +  𝑐3𝑤 χ𝑤 +  𝑐3𝑛𝑤𝑠

 𝐿𝑤𝑛𝑠 −  𝐹𝑖
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Work in progress…

• The coefficients from 
regression were 
correlated:
– Limited temporal 

resolution or limited
number of data points 
might not cover the 
possible nonlinear 
behavior.

• Possible non-geometric 
dependencies are not 
identified.

PD-MI-MD experiment
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Conclusions

• Free energy is a function of 7 geometrically independent 
variables (𝑆𝑛,  𝐴𝑛,  𝐴𝑤 ,  𝐻𝑛,  χ𝑛,  χ𝑤 ,  𝐿𝑤𝑛𝑠).

• The independent variables in extreme wetting conditions 
are (𝑆𝑛,  𝐴𝑛,  𝐻𝑛,  χ𝑛).

• Dissipation of the processes can be calculated by 
combining integral geometry and thermodynamics.

• Possible non-geometric dependencies have yet to be 
found by further experimental and theoretical work.
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Thank You
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Integral geometry and 2-fluid flow

• Steiner formula is a relation between volume and other 

intrinsic volumes when the structure changes.

• Based on simulated non-wetting fluid configurations 

– 𝐻𝑤𝑛 𝑆𝑛, 𝐴𝑤𝑛, χ𝑛 is valid as a state function. 

– 𝐻𝑤𝑛 𝑆𝑛 , 𝐻𝑤𝑛 𝑆𝑛, 𝐴𝑤𝑛 are non-unique.

McClure et al. 2018

ᵟ
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