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Outline	



Applica8on	of	Hill’s	thermodynamics	of	small	system	
(nanothermodynamics)		and	KBI	to	molecular	systems	
	
	
Col.	:	S.	Kjelstrup,	D.	Bedeaux	and	S.	Schnell	(Trondheim)	
P.	Krüger	(University	of	Chiba),	T.	Vlugt		(T.U.DelZ)		
		
-		to	give	validaMon	evidences	at	a	molecular	scale	of	nanothermodynamics		
-	to	explore	the	use	and	applicaMon	of	nanothermodynamics	for	a	be[er	
understanding	and	analysing	of	molecular	systems	(=>	new	tools)	
	



Kirkwood-Buff	integral		
J. G. Kirkwood and F. P. Buff, J. Chem. Phys. 19 (1951) 774.	
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G V( ) = 1
V

d
V
∫

V
∫ rdr' g r − r'( )µ,V ,T

−1⎡
⎣

⎤
⎦,  Kirkwood-Buff Integral (KBI)



Kirkwood-Buff	integral	and	number	fluctua8ons		
J. G. Kirkwood and F. P. Buff, J. Chem. Phys. 19 (1951) 774.	
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Kirkwood-Buff	integral	and	thermodynamics	
J. G. Kirkwood and F. P. Buff, J. Chem. Phys. 19 (1951) 774.	
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N 2 − N 2

N

⎛

⎝
⎜

⎞

⎠
⎟
µ ,V ,T

= 1+ ρ G V( ) = kBT
N

∂ N
∂µ

⎛
⎝⎜

⎞
⎠⎟ T ,V

= ΓV
−1

Thermodynamic	factor	

Γ−1 = kBT
∂ρ
∂P

⎛
⎝⎜

⎞
⎠⎟ T

= ρkBTβT Isothermal	compressibility	

MulMcomponent	mixture	=>	parMal	molar	volume	

A.	Ben-Naim,	Molecular	Theory	of	SoluMons,	Oxford	University	Press,	Oxford,	UK,	2006.		
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Open	system:	grand	canonical	ensemble	
	Is	there	any	influence	of	“smallness”	(noise)	on	thermodynamics	?	

	molecular	systems	
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Scaling	laws	?	



9	

Shape	effects	?		



1	 2	 Nr	replicas	(open	systems)	…………	

T.H.	Hill,		
“Thermodynamics	of	small	systems”	(Dover,	1963)	
	

� 

Et = Nr E St = Nr S Nt = Nr N Vt = Nr V

� 

E = TS + µN − ˆ p V (In	the	thermodynamic	limit:		

� 

ˆ p = p )	

� 

dE = TdS + µdN − pdV
10	

� 

Et = TSt + µNt − ˆ p Vt

Nanothermodynamics	



1	 2	 Nr	replicas	(open	systems)	…………	

T.H.	Hill,		
“Thermodynamics	of	small	systems”	(Dover,	1963)	

11	

� 

Vdˆ p = p − ˆ p ( )dV + SdT + N dµ, p = ˆ p + ∂ˆ p 
∂ lnV
⎛ 
⎝ 

⎞ 
⎠ T ,µ

� 

d ˆ p V( ) = S dT + N dµ + p dV Equivalent	to	Gibbs-	Duhem	

� 

ˆ p V = kT lnΞStaMsMcal	mechanics:	

� 

Ξ = exp βµN( )
N =0

∞

∑ QN
Grand	parMMon	funcMon:	



Energy:	surface	+	volume	contribuMons	

Open	small	systems	in	equilibrium	with	the	
surrounding:		grand	canonical	ensemble	(μ,	V,	T)			
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S.	K.	Schnell,	et	al.	Chem.	Phys.	Let.	504,	199	(2011)	
S.	K.	Schnell,	et	al.	Mol.	Phys,	110,	1069	(2012)	

Sphere	of	radius	R	

R	

p̂ = kBTΛ
−3 exp βµ( )+ 6kBTΛ−2R−1 exp β Es + µ( )⎡⎣ ⎤⎦

= p∞ + A / R = p∞ + A' Surf .
Vol.

⎛
⎝⎜

⎞
⎠⎟

� 

ˆ p V = kT lnΞ

� 

Ξ = exp βµN( )
N =0

∞

∑ QN



Energy:	surface	+	volume	contribuMons	

� 

ˆ p = p∞ + A /R
p = p∞ + A' /R

Open	small	systems	in	equilibrium	with	the	
surrounding:		grand	canonical	ensemble	(μ,	V,	T)			

13	
S.	K.	Schnell,	et	al.	Chem.	Phys.	Let.	504,	199	(2011)	
S.	K.	Schnell,	et	al.	Mol.	Phys,	110,	1069	(2012)	

� 

s = s∞ + B /R
h = h ∞ + C /R

Sphere	of	radius	R	

For	one	compound:	

Γ−1 L( ) = 1
β

∂ lnN
∂µ

⎛
⎝⎜

⎞
⎠⎟ T ,V

=
N 2 − N 2

N

⎛

⎝
⎜

⎞

⎠
⎟
µ,V (L ),T

= Γ−1 L = ∞( )+ D / R

R	



SimulaMon	box	(NVT)	and		
small	embedded	boxes	

Γ−1 L( ) = N 2 − N 2

N

⎛

⎝
⎜

⎞

⎠
⎟
µ ,V (L ),T

A	small	system	embedded	in	a	large	one	obeys	
the	rules	of	grand	canonical	ensemble	
	
The	fluctuaMon	approach	in	small	systems	

14

For	molecular	dynamics	and	Monte-Carlo	simula8ons	

S. K. Schnell, et al. Chem. Phys. Let. 504, 199 (2011)
S. K. Schnell, et al. J. Phys. Chem. B, 115, 10911 (2011) 



SimulaMon	box	(NVT)	and		
small	embedded	boxes	

€ 

Γ−1 L( ) =
N 2 − N 2

N

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

µ,V (L ),T

= Γ∞( )−1 + D /L
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For	molecular	dynamics	and	Monte-Carlo	simula8ons	

Small System Method: SSM        Linear Extrapolation
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Shape	effects	???	
-  Size	and	shape	effects	on	thermodynamic	proper6es	of	nanoscale	volumes	of	

water,	B.	Strøm	et	al.,	PCCP,	19,	9016	(2017).	

14

L = V1/3

L / R = 0.80

L / R = 1.15 

L / R = 1.41

L / R= 1.61

R: circumradius

SPC/E Water
298 K, 105 Pa

ν(L) = N Γ−1 L( )
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Effect	on	smallness	on	thermodynamics	?	

Yes	=>	predicted	by	the	thermodynamics	of	small	systems	(Hill)	

Scaling	Laws	?	

Yes	=>	linear	in	1/R	or	S/V		
=>	New	efficient		tool	to	compute	Γ-1		hi,	vi	,	etc			by	
extrapola8ons		

Shape	effects	?		

Not	on	the	thermodynamic	limit,	scaling	like		S/V	



Kirkwood-Buff	integral,	Rela8on	structure-thermodynamics		
J. G. Kirkwood and F. P. Buff, J. Chem. Phys. 19 (1951) 774.	
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Γ−1 V( ) = N 2 − N 2

N

⎛

⎝
⎜

⎞

⎠
⎟
µ ,V ,T

= 1+ N
V

⎛
⎝⎜

⎞
⎠⎟G V( )

G V( ) = 1
V

d
V
∫

V
∫ rdr' g r − r'( )−1⎡⎣ ⎤⎦,  Kirkwood-Buff Integral



Kirkwood-Buff	integral,	Rela8on	structure-thermodynamics		
J. G. Kirkwood and F. P. Buff, J. Chem. Phys. 19 (1951) 774.	
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Γ−1 V( ) = N 2 − N 2

N

⎛

⎝
⎜

⎞

⎠
⎟
µ ,V ,T

= 1+ N
V

⎛
⎝⎜

⎞
⎠⎟G V( )

G V( ) = 1
V

d
V
∫

V
∫ rdr' gµVT r − r'( )−1⎡⎣ ⎤⎦,  Kirkwood-Buff Integral

2	main	challenges	:		
*	g(r)	in	GC	ensemble	and		*	double	integral		



Kirkwood-Buff	integral	
J. G. Kirkwood and F. P. Buff, J. Chem. Phys. 19 (1951) 774.	
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G V = ∞( ) = 1
V

d
V
∫

V
∫ rdr' gµVT r − r'( )−1⎡⎣ ⎤⎦

= 4π h(r)
0

∞

∫ r2dr

h(r) = g(r)−1[ ]



Kirkwood-Buff	integral	
J. G. Kirkwood and F. P. Buff, J. Chem. Phys. 19 (1951) 774.	
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G V = ∞( ) = 4π hµVT (r)
0

∞

∫ r2dr



Kirkwood-Buff	integral	
J. G. Kirkwood and F. P. Buff, J. Chem. Phys. 19 (1951) 774.	
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G V = ∞( ) = 4π gµVT (r)−1⎡⎣ ⎤⎦
0

∞

∫ r2dr

• 	Convergence	of	the	integral	is	poor	(i.e.	
ionic	system)	
• 	g(r)	should	be	known	accurately	unMl	r	
=>	∞	
	



Kirkwood-Buff	integral	
J. G. Kirkwood and F. P. Buff, J. Chem. Phys. 19 (1951) 774.	

In	general	in	molecular	simula8on	g(r)	is	not	known	accurately	un8l	r	=>	∞	
	
And	g(r)	is	oZen	not	computed	in	GC	ensemble	but	in	closed	system	(N	constant)			
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G V = ∞( ) = 4π gµVT (r)−1⎡⎣ ⎤⎦
0

∞

∫ r2dr



Kirkwood-Buff	integral	
J. G. Kirkwood and F. P. Buff, J. Chem. Phys. 19 (1951) 774.	

In	general	in	molecular	simula8on	g(r)	is	not	known	accurately	un8l	r	=>	∞	
	
And	g(r)	is	oZen	not	computed	in	GC	ensemble	but	in	closed	system	(N	constant)			
	

G V ≠ ∞( )  ?

24

G V = ∞( ) = 4π gµVT (r)−1⎡⎣ ⎤⎦
0

∞

∫ r2dr

 
G(V ) ≈ !GKB R( ) = 4π gµVT (r)−1⎡⎣ ⎤⎦

0

R

∫ r2dr

Approximation:



Kirkwood-Buff	integral	
J. G. Kirkwood and F. P. Buff, J. Chem. Phys. 19 (1951) 774.	

In	general	in	molecular	simula8on	g(r)	is	not	known	accurately	un8l	r	=>	∞	
	
And	g(r)	is	oZen	not	computed	in	GC	ensemble	but	in	closed	system	(N	constant)			
	

G V ≠ ∞( )  ?

25

G V = ∞( ) = 4π gµVT (r)−1⎡⎣ ⎤⎦
0

∞

∫ r2dr

 
G(V ) ≈ !GKB R( ) = 4π gµVT (r)−1⎡⎣ ⎤⎦

0

R

∫ r2dr

Approximation: Convergence	?		
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Exact	Volume	KB	Integrals	
P. Kruger, et al. J. Phys. Chem. Letter, 4, 235 (2013) 

G V( ) = 1
V

d
V
∫

V
∫ rdr' g r − r'( )−1⎡⎣ ⎤⎦

G(V ) =G(R) = 4π gµVT (r)−1⎡⎣ ⎤⎦r
2w(r,R)

0

2R

∫ dr

≠ 4π gµVT (r)−1⎡⎣ ⎤⎦
0

R

∫ r2dr

The expression of w(r,R) depends on the shape



w(r,R) = 1− 3x
2

+ x
3

2
⎛
⎝⎜

⎞
⎠⎟
, x = r

2R

G R( ) = V
N

Γ−1 −1( )µ ,V ,T
27

Exact spherical shape:

Exact	Volume	KB	Integrals	
P. Kruger, et al. J. Phys. Chem. Letter, 4, 235 (2013) 

G V( ) = 1
V

d
V
∫

V
∫ rdr' g r − r'( )−1⎡⎣ ⎤⎦

G(V ) = G(R) = 4π gµVT (r)−1⎡⎣ ⎤⎦r
2w(r,R)

0

2R

∫ dr

Other	shapes:	see	N.Dawas	et	al,	Mol.	Phys	2018,	P.	Kruger	Phys.	Rev.	E	97		(2018),	051301		
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Exact	Volume	KB	Integrals	
P. Kruger, et al. J. Phys. Chem. Letter, 4, 235 (2013) 

3 / 2
r /σ

exp 1− r /σ
χ

⎛
⎝⎜

⎞
⎠⎟
cos 2π r

σ
− 21
20

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
, r
σ

≥ 19
20

−1, r
σ

< 19
20

h(r) =

To	mimic	an	atomic	liquid	of	diameter	σ	
The	decaying	scale	is	governed	by	χ	(correlaMon	length)	
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Exact	Volume	KB	Integrals	
P. Kruger, et al. J. Phys. Chem. Letter, 4, 235 (2013) 

 
!GR = 4π gµVT (r)−1⎡⎣ ⎤⎦

0

R

∫ r2dr GR = 4π gµVT (r)−1⎡⎣ ⎤⎦
0

2R

∫ r2w(r,R)dr

h(r) = g(r)−1

Χ=2	
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Exact	Volume	KB	Integrals	
P. Kruger, et al. J. Phys. Chem. Letter, 4, 235 (2013) 

 
!GR = 4π gµVT (r)−1⎡⎣ ⎤⎦

0

R

∫ r2dr GR = 4π gµVT (r)−1⎡⎣ ⎤⎦
0

2R

∫ r2w(r,R)dr

Χ=20	
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Correc8on	of	the	g(r)	
N. Dawass, et al., Fluid Phase Equilibria, 486 (2019) 21 

g(r)	should	be	calculated	from	open	systems	
	
For	N	constant	finite	systems	:		

gNVT ,NPT ,NVE (r) ≈ gµVT (r)

=>	KBI	is	very	sensiMve	to	the	details	of	g(r)		

GNVT ,NPT (R) ≈GµVT (R)

=>	CorrecMon	of	g(r)	N	constant	=>	μVT			

As	the	system	size	increases	they	become	idenMcal	
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Correc8on	of	the	g(r)	
N. Dawass, et al., Fluid Phase Equilibria, 486 (2019) 21 

Ben	Naim	:		 gN (r) = g∞(r)+ c(r)
N

+O 1
N 2

⎛
⎝⎜

⎞
⎠⎟

Ganguly	and	V.d.	Vegt	:	
	

gαβ
vdV (r) = gαβ (r)

Nβ 1−
V
Vbox

⎛
⎝⎜

⎞
⎠⎟

Nβ 1−
V
Vbox

⎛
⎝⎜

⎞
⎠⎟
− ΔNαβ (r)−δαβ

ΔNαβ (r) = dr ' 4πr '2
0

r

∫ ρβ gαβ (r ')−1⎡⎣ ⎤⎦ Excess/depleMon		
number	of	parMcle			



Acetone-methanol	(300K,	1bar)	 Acetone-CCl4	(300K,	1	bar)	

Dense	non-ideal	system	(ideal	mixture	Γ-1=1)	
(=>	Where	grand	canonical	simulaMon	are	difficult	to	perform)			

33	
X.	Liu,	et	al.	J.	Phys.	Chem.	B,	115,	12921	(2011),	Ind.	Eng.	Chem.	Res,	51,	10247	(2012),	Int.	J.	Thermophys.,	
34,	1169	(2013)	

Ideal	=1	

Acetone	 Acetone	



Acetone-methanol	(300K,	1bar)	 Acetone-CCl4	(300K,	1	bar)	

Dense	non-ideal	system	(ideal	mixture	Γ-1=1)	
(=>	Where	grand	canonical	simulaMon	are	difficult	to	perform)			

34	
X.	Liu,	et	al.	J.	Phys.	Chem.	B,	115,	12921	(2011),	Ind.	Eng.	Chem.	Res,	51,	10247	(2012),	Int.	J.	Thermophys.,	
34,	1169	(2013)	

� 

 J = −DFick∇C  = −DMS C
RT

∇µ( )T                 DFick =>  experiments 

DFick = DMS /Γ−1                                    DMS =>  molecular dynamics

Acetone	 Acetone	
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Kirkwood-Buff	Integrals	and	par8al	molar	volume	
SimulaMon	of	ionic	(long	range	interacMon)	system	NaCl	soluMon		

System	:	NaCl	2	mol/l	in	water	(SPCE)	at	350	K,	1	bar,		electroneutrality	constraints	
S.K.	Schnell,	et	al.	Chem.	Phys.	Le[er,	582,	p154	(2013)		
	
ParMal	molar	volume	(ml/mol.)		
water:	 	sim.			18.5		 	 	exp.		17.6	
Na+:	 	sim.		-19.6		
Cl-: 	 	sim.				45.4	
	
NaCl: 	sim.				25.8 	 	exp.		25.0		

Kirkwood-Buff Integrals =>

Partial molar volume (binary) =>

J.	G.	Kirkwood	and	F.	P.	Buff,	J.	Chem.	Phys.	19	(1951)	774.	
P.	Kruger,	et	al.	J.	Phys.	Chem.	Le[er,	4,	235	(2013)		

Gij =
V
N j

Γ−1
ij −δ ij( ), Γ−1

ij =
Ni N j − Ni N j

Ni

⎛

⎝
⎜

⎞

⎠
⎟

v1 =
1+ G22 −G12( )N2

N1 + N2 + N1N2 G11 +G22 − 2G12( )
⎡

⎣
⎢

⎤

⎦
⎥



Conclusions	
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A-	Open	subsystems	of	larger	one		can	give	access	to	these	parMal	molar	quanMMes	by	
looking	at	fluctuaMons	around	equilibrium	values	or	KBI	
	
B-	Small	systems	can	be	analyzed	within	the	framework	of	thermodynamic	of	small	
systems	(nanothermodynamics)	

	 	=>	“intensive”	properMes	(parMal	molar	quanMMes)	are	no	longer	intensive	at				
small	scales		

	 	=>	scale	like	1/R	(surface	/volume)	independent	on	the	shape	
	
C-	=>	new	tools	for	molecular	simulaMon	(avoid	to	use	grand	canonical	ensemble)		
	
	

ApplicaMon	to	liquid	mixtures,	2D	adsorpMon,	solids,	…	
=>	Kirkwood-Buff	Integrals,	parMal	molar	enthalpy,	volume,…	
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Exact	Volume	KB	Integrals	
P. Kruger, et al. J. Phys. Chem. Letter, 4, 235 (2013) 

1-	Kirkwood	buff	Integrals	predict	the	size	dependence	of	
thermodynamic	properMes	
	
2-	In	agreement	with	thermodynamics	of	small	systems	of	Hill	
(nanothermodynamics)		and	Gibbs	surface	thermodynamics.	

-	Finite-size	effects	of	Kirkwood–Buff	integrals	from	molecular	simula6ons,	N	
Dawass,	et	al.	,	Mol.	Sim.,	44,	599	(2018).	
	
-  Kirkwood-Buff	integrals	from	molecular	simula6on,	N.	Dawass	et	al.,	Fluid	

Phase	Equilibria	486,	21-36	(2019)	
	
-  Kirkwood–Buff	integrals	of	finite	systems:	shape	effects,	N.	Dawass,	et	al.,	

Mol.phys.	116,	15573	(2018)	

-  Size	and	shape	effects	on	thermodynamic	proper6es	of	nanoscale	volumes	of	
water,	B.	Strøm	et	al.,	PCCP,	19,	9016	(2017).	
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In the limit V → ∞, the double integral on the right-hand
side (r.h.s.) can be reduced to a simple integral by the variable
transformation r2 → r = r1 − r2.

∫= −αβ αβ
∞ ∞

G g r dr( ( ) 1)
0 (3)

This infinite volume case was already considered by
Kirkwood and Buff,1 and Gαβ

∞ in eq 3 are referred to in the
literature as KB integrals. In the remainder, we consider a fixed
pair of species and drop the indices α,β. We further define h(r)
≡ g(r) − 1. It is crucial to note that for finite V, the double
integral in eq 2 cannot be reduced to a single one by the
transformation r2 → r = r1 − r2, because the integration domain
of r depends on r1. Therefore, the truncation of eq 3 to radius
2R,

∫ π̃ ≡G h r r r( )4 dR R

0

2
2

(4)

does not provide finite-size density fluctuations.6 Still, the use
G̃R for large R as a replacement for G∞ is widespread,2 despite
its poor convergence.
The KB integral of eq 2 can be rewritten by introducing the

function

∫ ∫ δ≡ −w r
V

r r dr dr( ) 1 ( )
V V

12 1 2 (5)

where δ(r − r12) is the Dirac delta function. w(r) can be
calculated analytically for hyperspheres of radius R (see Table 1
where we use the notation w(r,x) with x = r/(2R)). Using eq 2,
we then find for the KB integrals

∫= =G G h r w r x r( ) ( , ) dV R
R

0

2

(6)

We show now that GR varies asymptotically with the inverse
size of any system having a finite correlation length ξ. Consider
the quantity F ≡ ∫ Vdr1∫ Ω−Vdr2h(r12), where V is a closed
volume with surface S, Ω is the whole space, and Ω − V is the
space outside V. For sufficiently large V, only particles in a layer
of thickness ξ on either side of the surface contribute to F.
Therefore, when V increases, F scales as the surface S. We can
write F = ∫ V dr1∫ Ω dr2h(r12) − ∫ V dr1∫ V dr2h(r12). In the
integral over Ω, using r = r1 − r2 for any r1, we obtain F = ∫ V
dr1∫ Ω drh(r) − ∫ V dr1∫ V dr2h(r12) = VG∞ − VGV. As F ∼ S
for large V, we have GV − G∞ ∼ S/V ∼ 1/R for volumes of any
shape and dimension that are large compared to (2ξ)d. The
only assumption is the existence of a finite correlation length,
which solely breaks down in the critical point. The
proportionality factor of the inverse size dependence can be
estimated by a first-order Taylor expansion of GR: G∞ ≈ GR −
(1/R)(dGR/d(1/R)) ≡ ĜR, resulting in

∫̂ = − ∂
∂

⎜ ⎟⎛
⎝

⎞
⎠G h r w x w

x
r( ) dR R

0

2

(7)

w − x(∂w)/(∂x) is also listed in Table 1.
The exact expression (eq 6) and the extrapolated one (eq 7),

derived for hyperspheres and not for other geometries, are our
main results, which for R → ∞ both reduce to the KB integral
(eq 3). Although eq 4 and eqs 6 and 7 look very similar, their
physical meaning is completely different. The integral in eq 4 is
centered on one particle. Therefore, eq 4 does not respect the
symmetry of the fluid except in the limit V → ∞. This implies,
e.g., that the average density in the finite volume V considered
in eq 4 differs from the macroscopic value. In sharp contrast,
eqs 6 and 7 respect the symmetry of the system because no
particular point is singled out in eq 2. The volume centering in
eqs 6 and 7 is explicitly taken into account in the function w(r),
so the average density inside any finite volume V equals the
macroscopic value. This point is essential when dealing with
ionic systems, as it is well-known that a key criterion for
meaningful physics is to respect the average charge neutrality in
the sampled volume.
The convergence of eqs 4,6, and 7 can be tested using

oscillatory decaying functions.8,9 We consider the following
PCF mimicking a liquid with atoms of diameter σ:

σ
σ

χ π σ σ

σ
=

− − ≥

− <

⎜ ⎟
⎧
⎨
⎪⎪

⎩
⎪⎪

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠
⎤
⎦⎥

h r r
r r r

r

( )

3/2
/

exp 1 / cos 2 21
20

, 19
20

1, 19
20 (8)

The length scale at which fluctuations of h(r) decay is
controlled by χ. Despite its simplicity, this model provides
detailed insight into the differences in convergence of G̃R, GR,
and ĜR (see Figure 1). In all cases, G̃R, GR, and ĜR eventually

Table 1. Geometrical Functions for d = 1,2,3 Dimensions, in
Agreement with Giorgini et al.7,a

d KB w w − x(∂w/∂x)

1 1 1 − x 1
2 2πr 4r(arccos(x) − x(1 − x2)1/2) 4r(arccos(x) + x(1 − x2)1/2)
3 4πr2 4πr2(1 − 3x/2 + x3/2) 4πr2(1 − x3)

ax = r /(2R). w and −x(∂w/∂x) are strictly zero for x ≥ 1. The
functions that correspond to w in the usual KB theory (eq 4) are listed
under “KB”.

Figure 1. Various approaches to compute KB integrals from PCFs.
h(r) (eq 8) for χ = 2 (a) and χ = 20 (b), and G̃R, GR, and ĜR obtained
using eqs 4,6, and 7, respectively, as a function of reduced values of r, R
(left) and their inverse (right).
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The	1/R	(S/V)	dependence	of	G(V)	



Number	fluctua8ons	and	Kirkwood-Buff	integral,		
Rela8on	structure-thermodynamics		
J. G. Kirkwood and F. P. Buff, J. Chem. Phys. 19 (1951) 774.	
	

40

Γ−1 V( ) = N 2 − N 2

N

⎛

⎝
⎜

⎞

⎠
⎟
µ ,V ,T

= 1+ ρ G V( )

G V( ) = 1
V

d
V
∫

V
∫ rdr' g r − r'( )−1⎡⎣ ⎤⎦,  Kirkwood-Buff Integral (KBI)
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FIG. 1. Double-well spring potential (Eq. (52)) used for the model reaction
A ⇀↽ B. The distance between the potential wells is 2w, and hmin,2 is the
height of the second well. The height of the barrier between the two wells
changes with hmin,2.

box, while the smaller box was used as a reference to improve
the calculation of the KB integrals, see Krüger et al. for more
details.21

VI. RESULTS AND DISCUSSION

A. Results for binary WCA systems

We discuss first the intermediate results from the small
system method (method (a)), see Figs. 2–4, before the main
results are presented in Fig. 5. All computed data were ob-
tained with statistical uncertainties lower than 5%.

The first step in the small system method provides val-
ues for (∂H/∂Ni)T ,V,µ

j
. The thermodynamic limit is obtained

from linear extrapolation of the quantity calculated from
Eq. (19) in small systems, see Fig. 2. As 1/$ij, scales lin-

FIG. 2. (∂Ni/∂Ĥ )T ,V,µ
j

as a function of the small system size 1/L for

x1 = 0.2. In agreement with Eq. (21), the trend is linear until it deviates for
small 1/L when the small system size is close to the simulation box size. The
thermodynamic limit was obtained from a linear extrapolation (black lines
and red points) between the two dashed lines.

FIG. 3. Partial enthalpies in the grand-canonical ensemble. Data were sam-
pled for small systems embedded in a larger simulation box, maintained in the
canonical ensemble. These values were extrapolated to the thermodynamic
limit (see also Fig. 2). For comparison, partial enthalpies were computed di-
rectly in grand-canonical simulations. The chemical potential was adjusted
to approximate the density and composition used in the canonical ensemble.
Clearly both approaches yield identical results.

(a)

(b)

FIG. 4. Partial enthalpies in the NV T ensemble. A series of NV T simula-
tions with different particle numbers were carried out (method (i)). The red
line is obtained by converting the molar enthalpies from Fig. 3, using the
Kirkwood-Buff coefficients needed to calculate A and B.
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Par8al	molar	enthalpy	from	small	system	method	
(binary	mixture	MD,	dense	LJ	liquid)	
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ND	:	Numerical	differenMaMon	(exact	method,	very	Mme	consuming,	not	
for	chemically	constrained	systems)	
DM	:	Difference	method	(Frenkel	et	al.,	standard	in	molecular	simulaMon)		
SSM	:	Small	System	Method	
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Chemically	constrained	systems	in	mixtures	
=>	Reduced	degree	of	freedom	(Gibb’s	phase	rule)			

=>	Equilibrium	chemical	reacMon		

H2! 2H

KT =
aH( )2
aH2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥eq.

=>	Charge	neutrality	
NaCl	soluMon	in	water	Number	of	Na+=Number	of	Cl-	
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ρ* = 0.0011 => 0.0191 g/cm3
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ρ* = 0.004 => 0.0695 g/cm3

Par8al	molar	enthalpy	and	reac8on	enthalpy			
from	small	system	method	
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Δ rH = 2hH − hH2

(3000K-20,000K)	
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� 

ρ = 17.38 ρ *
10−5 ≤ ρ* ≤ 0.004
1.7110−4 g/cm3 ≤ ρ ≤ 0.0695 g/cm3

� 

T = 52000 T *
2.6810−4 ≤ T* ≤ 0.4
14K ≤ T ≤ 20800 K

=>	Bellow	200K	quantum	
effects,	not	taken	into	account		� 

NP = NH + 2NH2
= 1000

i	

j	

k	

Atomic	model	interac8ng	through	2	and	3	bodies		
	

Ref:	D.	Kohen,	J.	C.	Tully	and	F.	H.	SMllinger,	Modeling	the	
interacMon	of	hydrogen	with	silicon	surfaces,	Surf.	Sci.,	
1998,	397,	225–236.	

Reac8ve	force	field		  H2! 2H
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Par8al	molar	enthalpy	and	reac8on	enthalpy		from	small	system	method	
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