Kirkwood-Buff Integrals from molecular simulations

Jean-Marc Simon,

Laboratoire Interdisciplinaire Carnot de Bourgogne (LICB)
UMR 6303 CNRS-Université de Bourgogne, Dijon, France
Outline

I- Kirkwood Buff Integrals and density fluctuations

II- Nanothermodynamics

III- Application of nanothermodynamics to molecular simulation

IV- the integration of the Kirkwood Buff Integral in a finite system

V- Applications and conclusion
Application of Hill’s thermodynamics of small system (nanothermodynamics) and KBI to molecular systems

Col.: S. Kjelstrup, D. Bedeaux and S. Schnell (Trondheim) P. Krüger (University of Chiba), T. Vlugt (T.U.Delft)

- to give validation evidences at a molecular scale of nanothermodynamics
- to explore the use and application of nanothermodynamics for a better understanding and analysing of molecular systems (=> new tools)
Kirkwood-Buff integral

\[G(V) = \frac{1}{V} \int_V \int_V d\mathbf{r} d\mathbf{r}' \left[g(|\mathbf{r} - \mathbf{r}'|)_{\mu,V,T} - 1 \right] \], Kirkwood-Buff Integral (KBI)
Kirkwood-Buff integral and number fluctuations

\[G(V) = \frac{1}{V} \iint d\mathbf{r} d\mathbf{r}' \left[g(|\mathbf{r} - \mathbf{r}'|)_{\mu,V,T} - 1 \right], \]

\[\left(\frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle} \right)_{\mu,V,T} = 1 + \rho \, G(V) \]
Kirkwood-Buff integral and thermodynamics

\[
\left(\frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle} \right)_{\mu,V,T} = 1 + \rho \ G(V) = \frac{k_B T}{\langle N \rangle} \left(\frac{\partial \langle N \rangle}{\partial \mu} \right)_{T,V} = \Gamma_V^{-1}
\]

Thermodynamic factor

\[
\Gamma^{-1} = k_B T \left(\frac{\partial \rho}{\partial P} \right)_T = \rho k_B T \beta_T
\]

Isothermal compressibility

Multicomponent mixture => partial molar volume

Open system: grand canonical ensemble
Is there any influence of “smallness” (noise) on thermodynamics?
Scaling laws?
Shape effects?
Nanothermodynamics

T.H. Hill,
“Thermodynamics of small systems” (Dover, 1963)

\[E_t = TS_t + \mu N_t - \hat{p}V_t \]

\[E_t = N_r \overline{E} \quad S_t = N_r S \quad N_t = N_r \overline{N} \quad V_t = N_r V \]

\[\overline{E} = TS + \mu \overline{N} - \hat{p}V \quad (\text{In the thermodynamic limit: } \hat{p} = p) \]

\[d\overline{E} = TdS + \mu d\overline{N} - pdV \]
T.H. Hill, "Thermodynamics of small systems" (Dover, 1963)

\[d(\hat{p}V) = S\,dT + \overline{N}\,d\mu + p\,dV\]

Equivalent to Gibbs- Duhem

\[Vd\hat{p} = (p - \hat{p})dV + SdT + \overline{N}d\mu, \quad p = \hat{p} + \left(\frac{\partial \hat{p}}{\partial \ln V}\right)_{T,\mu}\]

Statistical mechanics:

\[\hat{p}V = kT \ln \Xi\]

Grand partition function:

\[\Xi = \sum_{N=0}^{\infty} \exp(\beta \mu N) Q_N\]
Open small systems in equilibrium with the surrounding: **grand canonical ensemble \((\mu, V, T)\)**

Sphere of radius \(R\)

Energy: surface + volume contributions

\[
\hat{p}V = kT \ln \Xi \\
\Xi = \sum_{N=0}^{\infty} \exp(\beta \mu N) Q_N
\]

\[
\hat{p} = k_B T \Lambda^{-3} \exp(\beta \mu) + 6 k_B T \Lambda^{-2} R^{-1} \exp[\beta (E^s + \mu)] \\
= p^\infty + A / R = p^\infty + A \left(\frac{\text{Surf.}}{\text{Vol.}} \right)
\]

Open small systems in equilibrium with the surrounding: grand canonical ensemble (μ, V, T)

Sphere of radius R

Energy: surface + volume contributions

\[\hat{p} = p^\infty + A/R \quad s = s^\infty + B/R \]
\[p = p^\infty + A'/R \quad \bar{h} = \bar{h}^\infty + C/R \]

For one compound:

\[\Gamma^{-1}(L) = \frac{1}{\beta} \left(\frac{\partial \ln \bar{N}}{\partial \mu} \right)_{T,V} = \left(\frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle} \right)_{\mu, V(L), T} = \Gamma^{-1}(L = \infty) + D/R \]

For molecular dynamics and Monte-Carlo simulations

A small system embedded in a large one obeys the rules of grand canonical ensemble

The fluctuation approach in small systems

$$\Gamma^{-1}(L) = \left(\frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle} \right)_{\mu, V(L), T}$$

Simulation box (NVT) and small embedded boxes

For molecular dynamics and Monte-Carlo simulations

\[\Gamma^{-1}(L) = \left(\frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle} \right)_{\mu,V(L),T} = \left(\Gamma^\infty \right)^{-1} + \frac{D}{L} \]

Simulation box \((NVT)\) and small embedded boxes

Small System Method: SSM

Linear Extrapolation
Shape effects

- *Size and shape effects on thermodynamic properties of nanoscale volumes of water*, B. Strøm et al., PCCP, **19**, 9016 (2017).

\[L = \sqrt[3]{V} \]

SPC/E Water 298 K, 10^5 Pa

\[
\frac{L}{R} = 0.80
\]

\[
\frac{L}{R} = 1.15
\]

\[
\frac{L}{R} = 1.41
\]

\[
\frac{L}{R} = 1.61
\]

\[R: \text{circumradius} \]

\[\nu(L) = \langle N \rangle \Gamma^{-1}(L) \]
Effect on smallness on thermodynamics?

Yes => predicted by the thermodynamics of small systems (Hill)

Scaling Laws?

Yes => linear in \(1/R\) or \(S/V\)

=> New efficient tool to compute \(\Gamma^{-1}, h_i, v_i, \text{etc}\) by extrapolations

Shape effects?

Not on the thermodynamic limit, scaling like \(S/V\)
Kirkwood-Buff integral, Relation structure-thermodynamics

\[
\Gamma^{-1}(V) = \left(\frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle} \right)_{\mu,V,T} = 1 + \left(\frac{N}{V} \right)G(V)
\]

\[
G(V) = \frac{1}{V} \int \int \int \frac{d\mathbf{r} d\mathbf{r}'}{V} \left[g(|\mathbf{r} - \mathbf{r}'|) - 1 \right], \text{ Kirkwood-Buff Integral}
\]
Kirkwood-Buff integral, Relation structure-thermodynamics

\[\Gamma^{-1}(V) = \left(\frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle} \right)_{\mu, V, T} = 1 + \left(\frac{N}{V} \right) G(V) \]

\[G(V) = \frac{1}{V} \int \int_{V \times V} d\mathbf{r} d\mathbf{r}' \left[g^{\mu VT}(|\mathbf{r} - \mathbf{r}'|) - 1 \right] \], Kirkwood-Buff Integral

2 main challenges:
* g(r) in GC ensemble and
* double integral
Kirkwood-Buff integral

\[G(V = \infty) = \frac{1}{V} \int \int \frac{d\mathbf{r} d\mathbf{r}'}{V^2} \left[g^{\mu\nu T} (|\mathbf{r} - \mathbf{r}'|) - 1 \right] \]

\[= 4\pi \int_0^\infty h(r) r^2 dr \]

\[h(r) = [g(r) - 1] \]
Kirkwood-Buff integral

\[G(V = \infty) = 4\pi \int_0^\infty h^{\mu VT}(r)r^2 dr \]
Kirkwood-Buff integral

\[
G(V = \infty) = 4\pi \int_0^\infty \left[g^{\mu\nu T}(r) - 1 \right] r^2 dr
\]

- Convergence of the integral is poor (i.e. ionic system)
- \(g(r)\) should be known accurately until \(r \Rightarrow \infty\)
Kirkwood-Buff integral

\[G(V = \infty) = 4\pi \int_{0}^{\infty} \left[g^{\muVT}(r) - 1 \right] r^2 dr \]

In general in molecular simulation \(g(r) \) is not known accurately until \(r \rightarrow \infty \)

And \(g(r) \) is often not computed in GC ensemble but in closed system (N constant)
Kirkwood-Buff integral

\[G(V = \infty) = 4\pi \int_0^\infty \left[g^{\mu VT}(r) - 1 \right] r^2 dr \]

In general in molecular simulation \(g(r) \) is not known accurately until \(r \to \infty \)

And \(g(r) \) is often not computed in GC ensemble but in closed system (N constant)

Approximation:

\[G(V \neq \infty) \approx G^{KB}(R) = 4\pi \int_0^R \left[g^{\mu VT}(r) - 1 \right] r^2 dr \]
Kirkwood-Buff integral

\[
G(V = \infty) = 4\pi \int_0^\infty \left[g^{\mu VT}(r) - 1 \right] r^2 dr
\]

In general in molecular simulation \(g(r) \) is not known accurately until \(r \to \infty \)

And \(g(r) \) is often not computed in GC ensemble but in closed system (N constant)

Approximation:

\[
G(V \neq \infty) \text{?}
\]

\[
G(V) \approx \tilde{G}^{KB}(R) = 4\pi \int_0^R \left[g^{\mu VT}(r) - 1 \right] r^2 dr
\]

Convergence ?
Exact Volume KB Integrals

\[G(V) = \frac{1}{V} \int \int d\mathbf{r} d\mathbf{r}' \left[g(|\mathbf{r} - \mathbf{r}'|) - 1 \right] \]

\[G(V) = G(R) = 4\pi \int_0^{2R} \left[g^{\mu\nu T}(r) - 1 \right] r^2 w(r, R) \, dr \]

\[\neq 4\pi \int_0^R \left[g^{\mu\nu T}(r) - 1 \right] r^2 \, dr \]

The expression of \(w(r, R) \) depends on the shape
Exact Volume KB Integrals

\[G(V) = \frac{1}{V} \int \int d\mathbf{r} d\mathbf{r}' \left[g(|\mathbf{r} - \mathbf{r}'|) - 1 \right] \]

\[G(V) = G(R) = 4\pi \int_0^{2R} \left[g^{\mu VT}(r) - 1 \right] r^2 w(r, R) dr \]

Exact spherical shape:

\[w(r, R) = \left(1 - \frac{3x}{2} + \frac{x^3}{2} \right), \quad x = \frac{r}{2R} \]

\[G(R) = \frac{V}{N} \left(\Gamma^{-1} - 1 \right)_{\mu, \nu, T} \]

Exact Volume KB Integrals

\[h(r) = \begin{cases}
 \frac{3}{2} \exp\left(\frac{1-r/\sigma}{\chi}\right) \cos\left[2\pi\left(\frac{r}{\sigma} - \frac{21}{20}\right)\right], & \frac{r}{\sigma} \geq \frac{19}{20} \\
 -1, & \frac{r}{\sigma} < \frac{19}{20}
\end{cases} \]

To mimic an atomic liquid of diameter \(\sigma \)
The decaying scale is governed by \(\chi \) (correlation length)
Exact Volume KB Integrals

\[G(R) = 4\pi \int_0^R \left[g^{\mu\nu}(r) - 1 \right] r^2 dr \]

\[\hat{G}^R = 4\pi \int_0^R \left[g^{\mu\nu}(r) - 1 \right] r^2 dr \]

\[\hat{G}^R = 4\pi \int_{2R}^R \left[g^{\mu\nu}(r) - 1 \right] r^2 w(r, R) dr \]
Exact Volume KB Integrals

\[\tilde{G}^R = 4\pi \int_0^R \left[g^{\mu\nu} (r) - 1 \right] r^2 dr \]

\[G^R = 4\pi \int_0^{2R} \left[g^{\mu\nu} (r) - 1 \right] r^2 w(r, R) dr \]
Correction of the $g(r)$

$g(r)$ should be calculated from open systems

For N constant finite systems:

$$g^{NVT,NPT,NVE}(r) \approx g^{\mu VT}(r)$$ \hspace{1cm} \text{As the system size increases they become identical}

\Rightarrow KBI is very sensitive to the details of $g(r)$

$$G^{NVT,NPT}(R) \approx G^{\mu VT}(R)$$

\Rightarrow Correction of $g(r)$ N constant $\Rightarrow \mu VT$
Correction of the $g(r)$

N. Dawass, et al., Fluid Phase Equilibria, **486** (2019) 21

Ben Naim:
\[
g^N(r) = g^\infty(r) + \frac{c(r)}{N} + O\left(\frac{1}{N^2}\right)
\]

Ganguly and V.d. Vegt:

\[
g^{vdV}_{\alpha\beta}(r) = g_{\alpha\beta}(r) \frac{N_\beta \left(1 - \frac{V}{V_{box}}\right)}{N_\beta \left(1 - \frac{V}{V_{box}}\right) - \Delta N_{\alpha\beta}(r) - \delta_{\alpha\beta}}
\]

\[
\Delta N_{\alpha\beta}(r) = \int_0^r dr' 4\pi r'^2 \rho_\beta \left[g_{\alpha\beta}(r') - 1\right] \quad \text{Excess/depletion number of particle}
\]
Dense non-ideal system (ideal mixture $\Gamma^{-1} = 1$)
(=> Where grand canonical simulation are difficult to perform)

Dense non-ideal system (ideal mixture $\Gamma^{-1}=1$)
(=> Where grand canonical simulation are difficult to perform)

Acetone-methanol (300K, 1bar)

Acetone-CCl₄ (300K, 1 bar)

\[J = -D^{Fick} \nabla C = -D^{MS} \frac{C}{RT} (\nabla \mu)_T \]

\[D^{Fick} = D^{MS} / \Gamma^{-1} \]

\[D^{Fick} \Rightarrow \text{experiments} \]

\[D^{MS} \Rightarrow \text{molecular dynamics} \]

Kirkwood-Buff Integrals and partial molar volume
Simulation of ionic (long range interaction) system NaCl solution

Kirkwood-Buff Integrals =>
\[G_{ij} = \frac{V}{\langle N_j \rangle} (\Gamma_{ij}^{-1} - \delta_{ij}), \]
\[\Gamma_{ij}^{-1} = \left(\frac{\langle N_i N_j \rangle - \langle N_i \rangle \langle N_j \rangle}{\langle N_i \rangle} \right) \]

Partial molar volume (binary) =>
\[v_i = \left[\frac{1 + (G_{22} - G_{12}) N_2}{N_1 + N_2 + N_1 N_2 (G_{11} + G_{22} - 2G_{12})} \right] \]

System: NaCl 2 mol/l in water (SPCE) at 350 K, 1 bar, electroneutrality constraints

Partial molar volume (ml/mol.)
water: sim. 18.5 exp. 17.6
Na⁺: sim. -19.6
Cl⁻: sim. 45.4

NaCl: sim. 25.8 exp. 25.0
Conclusions

A- Open subsystems of larger one can give access to these partial molar quantities by looking at fluctuations around equilibrium values or KBI

B- Small systems can be analyzed within the framework of thermodynamic of small systems (nanothermodynamics)
 => “intensive” properties (partial molar quantities) are no longer intensive at small scales
 => scale like 1/R (surface /volume) independent on the shape

C- => new tools for molecular simulation (avoid to use grand canonical ensemble)

Application to liquid mixtures, 2D adsorption, solids, ...
=> Kirkwood-Buff Integrals, partial molar enthalpy, volume,...
Exact Volume KB Integrals

1- Kirkwood buff Integrals predict the size dependence of
thermodynamic properties

2- In agreement with thermodynamics of small systems of Hill
(nanothermodynamics) and Gibbs surface thermodynamics.

- *Finite-size effects of Kirkwood–Buff integrals from molecular simulations*, N

- *Kirkwood-Buff integrals from molecular simulation*, N. Dawass et al., Fluid

- *Kirkwood–Buff integrals of finite systems: shape effects*, N. Dawass, et al.,

- *Size and shape effects on thermodynamic properties of nanoscale volumes of
 water*, B. Strøm et al., PCCP, **19**, 9016 (2017).
Acknowledgements

TU Delft
Thijs Vlugt
Noura Dawass

NTNU
Sondre Schnell
Dick Bedeaux
Signe Kjelstrup

University of Chiba
Peter Kruger

Happy birthday Signe !!!
And Thank You
The 1/R (S/V) dependence of G(V)

We show now that \(G_R \) varies asymptotically with the inverse size of any system having a finite correlation length \(\xi \). Consider the quantity \(F \equiv \int_V dr_1 \int_{\Omega-V} dr_2 h(r_{12}) \), where \(V \) is a closed volume with surface \(S \), \(\Omega \) is the whole space, and \(\Omega - V \) is the space outside \(V \). For sufficiently large \(V \), only particles in a layer of thickness \(\xi \) on either side of the surface contribute to \(F \). Therefore, when \(V \) increases, \(F \) scales as the surface \(S \). We can write \(F = \int_V dr_1 \int_{\Omega} dr_2 h(r_{12}) - \int_V dr_1 \int_V dr_2 h(r_{12}) \). In the integral over \(\Omega \), using \(r = r_1 - r_2 \) for any \(r_1 \), we obtain \(F = \int_V dr_1 \int_{\Omega} dr h(r) - \int_V dr_1 \int_V dr_2 h(r_{12}) = VG^\infty - VG^V \). As \(F \sim S \) for large \(V \), we have \(G^V - G^\infty \sim S/V \sim 1/R \) for volumes of any shape and dimension that are large compared to \((2\xi)^d\). The only assumption is the existence of a finite correlation length, which solely breaks down in the critical point. The
Number fluctuations and Kirkwood-Buff integral, Relation structure-thermodynamics

\[
\Gamma^{-1}(V) = \left(\frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle} \right)_{\mu, V, T} = 1 + \rho \, G(V)
\]

\[
G(V) = \frac{1}{V} \int_{V} \int_{V} d\mathbf{r} d\mathbf{r}' \left[g(|\mathbf{r} - \mathbf{r}'|) - 1 \right], \text{Kirkwood-Buff Integral (KBI)}
\]
Partial molar enthalpy from small system method (mixtures)

Partial molar enthalpy $\Rightarrow \left(\frac{\partial H}{\partial N_i} \right)_{N_{j \neq i}, P, T} = h_i$

Calorimetry

Grand canonical ensemble

$$\left(\frac{\partial H}{\partial N_i} \right)_{\mu_{j \neq i}, V, T} = - \frac{\langle UN_i \rangle - \langle U \rangle \langle N_i \rangle + k_B T \langle N_i \rangle}{\langle N_i^2 \rangle - \langle N_i \rangle^2}$$

U: internal energy

PT ensemble

$$\Rightarrow \left(\frac{\partial H}{\partial N_i} \right)_{\mu_{j \neq i}, V, T} = h_i \quad \text{knowing, } \Gamma^{-1} \text{ and } V_i$$
Partial molar enthalpy from small system method (mixtures)

Grand canonical ensemble

\[
\left(\frac{\partial H}{\partial N_i} \right)_{\mu_j, \nu, T} = - \frac{\langle UN_i \rangle - \langle U \rangle \langle N_i \rangle + k_B T \langle N_i \rangle}{\langle N_i^2 \rangle - \langle N_i \rangle^2}
\]

FIG. 1. Double-well spring potential (Eq. 52) used for the model reaction \(A \rightleftharpoons B\). The distance between the potential wells is \(2w\), and \(h_{\text{min}, 2}\) is the height of the second well. The height of the barrier between the two wells changes with \(h_{\text{min}, 2}\).

FIG. 2. \(\langle \frac{\partial N_i}{\partial \hat{H}} \rangle_{T, V, \mu_j}\) as a function of the small system size \(1/L\) for \(x_1 = 0.2\). In agreement with Eq. (21), the trend is linear until it deviates for small \(1/L\) when the small system size is close to the simulation box size. The thermodynamic limit was obtained from a linear extrapolation (black lines and red points) between the two dashed lines.

FIG. 3. Partial enthalpies in the grand-canonical ensemble. Data were sampled for small systems embedded in a larger simulation box, maintained in the canonical ensemble. These values were extrapolated to the thermodynamic limit (see also Fig. 2). For comparison, partial enthalpies were computed directly in grand-canonical simulations. The chemical potential was adjusted to approximate the density and composition used in the canonical ensemble. Clearly both approaches yield identical results.

FIG. 4. Partial enthalpies in the \(NVT\) ensemble. A series of \(NVT\) simulations with different particle numbers were carried out (method (i)). The red line is obtained by converting the molar enthalpies from Fig. 3, using the Kirkwood-Buff coefficients needed to calculate \(A\) and \(B\).
Partial molar enthalpy from small system method (binary mixture MD, dense LJ liquid)

\[\frac{\partial H}{\partial N_1} \]

\[x_1 \]

\[h_1 \]

\[h_2 \]

ND: Numerical differentiation (exact method, very time consuming, not for chemically constrained systems)

DM: Difference method (Frenkel et al., standard in molecular simulation)

SSM: Small System Method
Chemically constrained systems in mixtures

=> Reduced degree of freedom (Gibb’s phase rule)

=> Equilibrium chemical reaction

\[H_2 \rightleftarrows 2H \]

\[K_T = \left[\frac{(a_H)^2}{a_{H_2}} \right]_{eq.} \]

=> Charge neutrality

NaCl solution in water Number of Na\(^+\)=Number of Cl\(^-\)
Partial molar enthalpy and reaction enthalpy from small system method R. Skorpa et al. PCCP 16, 19681 (2014)

\[\Delta_r H = 2h_H - h_{H_2} \]

\[H_2 \leftrightarrow 2H \quad (3000K-20,000K) \]

\[\rho^* = 0.0011 \Rightarrow 0.0191 \text{ g/cm}^3 \]

\[\rho^* = 0.004 \Rightarrow 0.0695 \text{ g/cm}^3 \]
Reactive force field \[\ce{H_2 \rightleftharpoons 2H} \]

\[
N_P = N_H + 2N_{H_2} = 1000
\]

\[
\rho = 17.38 \rho^* \\
10^{-5} \leq \rho^* \leq 0.004 \\
1.71 \times 10^{-4} \text{g/cm}^3 \leq \rho \leq 0.0695 \text{g/cm}^3
\]

\[
T = 52000 T^* \\
2.68 \times 10^{-4} \leq T^* \leq 0.4 \\
14K \leq T \leq 20800 \text{K}
\]

=> Below 200K quantum effects, not taken into account

Atomic model interacting through 2 and 3 bodies

\[
U(r_1, \ldots, r_N) = \sum_{i<j} u(2)(r_{ij}) + \sum_{i<j<k} u(3)(r_{ij}, r_{jk}, r_{ik})
\]

\[
u(3) = h_{i,j,k}(r_{ij}, r_{jk}, \theta_{ij,k}) + h_{j,i,k}(r_{ji}, r_{ik}, \theta_{j,i,k}) + h_{i,k,j}(r_{ik}, r_{jk}, \theta_{i,k,j})
\]

Composition (Bulk)

\[
\text{H}_2 = 2 \text{H}
\]

\[
K_{th} = \frac{(x_H \gamma_H)^2}{x_{H_2} \gamma_{H_2}^2} = K_x \frac{\gamma_H^2}{\gamma_{H_2}}, \quad K_x = \frac{x_H^2}{x_{H_2}}
\]

\[
\begin{align*}
\rho^* &= 0.0011 \Rightarrow 0.0191 \text{ g/cm}^3, \\
\text{gas like} \\
\rho^* &= 0.004 \Rightarrow 0.0695 \text{ g/cm}^3, \\
\text{liquid like} \\
\end{align*}
\]

van't Hoff:

\[
\left[\frac{d \ln K_{th}}{d(1/T)} \right]_P = -\frac{\Delta_r H^0}{R},
\]

\[
\begin{align*}
\rho^* &= 0.0011, \quad \Delta_r H^0 = 380 \text{ kJ/mol}, \\
\rho^* &= 0.004, \quad \Delta_r H^0 = 430 \text{ kJ/mol}, \\
\Delta_r H^0_{\text{exp}} &= 436 \text{ kJ/mol}
\end{align*}
\]
Partial molar enthalpy and reaction enthalpy from small system method

Grand canonical ensemble

\[
\left(\frac{\partial H}{\partial N_i} \right)_{\mu_j, V, T} = -\frac{\langle UN_i \rangle - \langle U \rangle \langle N_i \rangle + k_B T \langle N_i \rangle}{\langle N_i^2 \rangle - \langle N_i \rangle^2}
\]

PT ensemble

\[
\left(\frac{\partial H}{\partial N_i} \right)_{\mu_j, V, T} \Rightarrow \left(\frac{\partial H}{\partial N_i} \right)_{N_j, P, T} = h_i
\]

\[
\Delta_r H = 2h_H - h_{H_2}
\]

\[\rho^* = 0.004 \Rightarrow 0.0695 \text{ g/cm}^3\]

\[\rho^* = 0.0011 \Rightarrow 0.0191 \text{ g/cm}^3\]

Temperature 156K
Partial molar enthalpy and reaction enthalpy from small system method

\[\Delta_r H = 2h_H - h_{H_2} \]
\[\Delta_r H(T) / \Delta_r H^0 (\text{exp}, 298 \text{ K}) \]

\[\Delta_r H^0 (\text{exp}, 298 \text{ K}) = 436 \text{ kJ/mol} \]