

Norwegian University of Science and Technology

Time Correlation Functions of Immiscible Two-Phase Flow in Porous Media

M. Winkler, M. Aa. Gjennestad, D. Bedeaux, R. Cabriolu, S. Kjelstrup, A. Hansen

SK70, 29.-30. August Trondheim

PoreLab Steady state flow in a 2D Hele-Shaw Cell

The macroscopic system parameters remain constant – or change slowly on the scale of the fluctuations.

Both fluids move and fluid clusters break up and merge; still steady state.

- Tallakstad et al., Phys. Rev. Lett. **102**, 074502 (2009); Phys. Rev. E **80**, 036308 (2009).
- Erpelding et al. Phys. Rev. E 88, 053004 (2013).
- Aursjø et al. Frontiers in Physics. 2, 63 (2014).

Cooking with Onsager

Network Model

- Distribution of pore radii
- Constant pressure drop across network
- Flow in each pore between node i and j given by : $q_{ij} = \frac{g_{ij}}{l_{ij}} (p_j - p_i - p_c)$

Testing the ergodic hypothesis

Steady state of total flow, given the saturation, was

I) Computed as time average of the total systemII) Computed as ensemble average over subvolume V

I. Time averaging procedure:

Solve Kirchhoff equations for the network, Integrate flow equation over time until the total flow is constant

II. Metropolis Monte Carlo algorithm:

Take out a subvolume **V**. Run as in I. Return. Reject/Accept according to Metropolis algorithm.

Savani et al. Transp. Porous Med. (2017), Phys. Rev. E (2017)

Ergodic hypothesis obeyed!

Ca = 0.1, Fluids with the same viscosity

Fluctuations

μ_w=μ_{nw}=0.01 Pa s σ=3 N/m

REV

 $S_{AB} = S_A + S_B$

2ΔP_A

 \mathbf{Q}_{A}

Α

А

В

Q_A

Low Ca, Ca = 10^{-3} - 10^{-2} High Ca, Ca = inf

Time Correlation Function

Similarities to Glassy Systems

Convergence

Onsager Reciprocal Relations Apply

Low Ca, Sw = 0.5

Λ _{ii} · 10³ [m⁶/s]	ΔP = 10 [N/m²]	ΔΡ = 15	ΔP = 20
Λ_{ww}	456	722	1588
Λ_{nn}	690	1514	1879
Λ_{wn}	-106	-346	-729
$\Lambda_{\sf nw}$	-99	-320	-703

High Ca, $\Delta P = 10 [N/m^2]$

L _{ii} [.] 10 ³ [m ⁶ /s]	S _w = 0.25	S _w = 0.5	S _w = 0.75
Λ_{ww}	1	5	9
Λ_{nn}	21	90	191
Λ_{wn}	-5	-19	-46
$\Lambda_{\sf nw}$	-5	-22	-47

Transport Coefficients

Time correlation functions are related to transport coefficients:

x

e.g. Molecular diffusion:

$$D = \lim_{t \to \infty} \frac{1}{2t} \langle | x(t) - x(0) |^2 \rangle$$
$$x(t) = x(0) + \int_0^t dt' v(t')$$
$$(t) - x(0) |^2 = \int_0^t dt' v(t') \int_0^t dt'' v(t'')$$
$$D = \int_0^\infty d\tau \langle v(\tau) \cdot v(0) \rangle$$

 J_0

Transport Coefficients

Time correlation function of the average velocity or flow are related to collective diffusion and Maxwell-Stefan Diffusion coefficient (if more then one species present) :

$$\Lambda_{ik} \propto \int_0^\infty d\tau \langle J_i(\tau) \cdot J_k(0) \rangle$$

The Maxwell-Stefan diffusion coefficient for a two component system is proportional to:

$$D_{MS} \propto rac{x_2}{x_1} \Lambda_{11} + rac{x_1}{x_2} \Lambda_{22} - \Lambda_{12} - \Lambda_{21}$$

Diffusion and Friction coefficient

$v_j - v_i$	ΔP = 10 [N/m ²]	ΔΡ = 15	ΔΡ = 20
$D_{MS,ij}$	0.24	0.23	0.24

Conclusions

- Auto and cross correlation functions of immiscible two-phase flow do converge
- Cross coefficients obey Onsager Reciprocal Relation within the given accuracy
- Transport coefficients may be estimated from steady state simulations
- The framework of Non-equilibrium «thermodynamics» applies to this system

Thank you for your Attention !