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Waiting for water in Cape-Town

[2]

New Zealand Caribbean

[3]
[4]

[1]
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United Nations: Decade 2018 – 2028 to 
be used to “Avert a global water crisis”

Solutions Needed! Urgently!

[5]
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• Drinking water mostly produced by reverse osmosis at 
a cost of 0.45 – 0.66 $/m3

• Alternative methods more expensive

• 2016: CO2 emission of 70 mio tonnes/year by reverse
osmosis
• Expected to increase above 200 mio tonnes/year

in 2040

United Nations: Decade 2018 – 2028 to 
be used to “Avert a global water crisis”

Solutions Needed! Urgently!

[5]



Thermal Osmosis

6

Recent proposal: 

Use of low temperature waste heat to 
produce water 

With use of a hydrophobic vapor gap 
membrane

N. Kuipers et al. Desalination and Water Treatment, 55 (2015) 2766
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Water flows against a concentration-or pressure 
difference, driven by a temperature difference

Recent proposal: 

Use of low temperature waste heat to 
produce water 

With use of a hydrophobic vapor gap 
membrane

N. Kuipers et al. Desalination and Water Treatment, 55 (2015) 2766

Water flows from a pure state to a contaminated 
state down the gradient in chemical potential. 
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Water flows against a concentration-or pressure 
difference, driven by a temperature difference

Recent proposal: 

Use of low temperature waste heat to 
produce water 

With use of a hydrophobic vapor gap 
membrane

N. Kuipers et al. Desalination and Water Treatment, 55 (2015) 2766

Water flows from a pure state to a contaminated 
state down the gradient in chemical potential. 

Clean water vapor flows 
from the hot seawater 
(left) through the 
membrane (stippled line) 
to a water reservoir, which 
can be used in a turbine.
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Clean water vapor flows 
from the hot seawater 
(left) through the 
membrane (stippled line) 
to a water reservoir, which 
can be used in a turbine.

• Determination of most important factors for 
mass transport

• Determination of key transport coefficients

Molecular Dynamic Simulation
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Clean water vapor flows 
from the hot seawater 
(left) through the 
membrane (stippled line) 
to a water reservoir, which 
can be used in a turbine.

• Determination of most important factors for 
mass transport

• Determination of key transport coefficients

Molecular Dynamic Simulation

Surface I Surface IIHomogeneous Phase

Numerical Pore Simulation Numerical Process Simulation

• For optimization of process 
parameters (∆p, ∆T, ሶ𝑚 )

• Link to experiments (Kim)
• 2D / 3D



Objects of the PhD

12

Clean water vapor flows 
from the hot seawater 
(left) through the 
membrane (stippled line) 
to a water reservoir, which 
can be used in a turbine.

• Determination of most important factors for 
mass transport

• Determination of key transport coefficients

Molecular Dynamic Simulation

Surface I Surface IIHomogeneous Phase

Numerical Pore Simulation Numerical Process Simulation

• For optimization of process 
parameters (∆p, ∆T, ሶ𝑚 )

• Link to experiments (Kim)
• 2D / 3D



Molecular Dynamic Simulation

13

Solving Newtons equation of motion

Lennard-Jones Skin

Ri

Hard Core

Lennard-Jones/spline Potential

R

σ
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Equilibrium Pressures in Hydrophobic Pores
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System in Equilibrium!
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• For small systems: Thermodynamic
properties are not proportional to 
the volume any more

• No consensus at all about the
pressure computation

• Ordinary thermodynamic functions
are defined for macroscopic
systems only

Thermodynamic of Small Systems
(Hill)

Need to be adapted for 
small systems

System in Equilibrium!
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A system is large when the thermodynamic variables 
U, S and N are proportional to the systems volume

The total energy of two large systems
combined into one system is then equal 
to the sum of the separate energies.

A system is small when the thermodynamic variables 
U, S and N are NOT proportional to the systems 
volume

[6]
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Large Small

Large
Wall distance IS NOT in the range of

distance between particles

Small
Wall distance IS in the range of

distance between particles



Hill’s Nanothermodynamics
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extensive variables

proportional to the systems volume

Not suitable for small systems!

GibbsClausius



Hill’s Nanothermodynamics
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extensive variables

proportional to the systems volume

Replica Energy     - for change of energy, 
when adding one replica keeping St, Vt

and Nt constant

Vt = const

Nt = const

St = const

Not suitable for small systems!

GibbsClausius

Hill

= Number of Replicas

Hill



Here, the replica energy is a compressional 
energy and was denoted        by Hill

Replica Energy ε
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Replica energy is dependent on the
set of variables that are controlled!

V = Volume of 1 Replica

with

becomes

-

-



Here, the replica energy is a compressional 
energy and was denoted        by Hill

For small systems (       ≠ ) the last 

term comes into account

Replica Energy ε
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Replica energy is dependent on the
set of variables that are controlled!

V = Volume of 1 Replica

V = const

Nt = const

St = const

Total Volume increases by 1 more replica
(        increases)

For macroscopic systems (       =       ) 
the last term disappears

with

becomes

-

-



A couple of thermodynamic tricks lead to the
definition of a new pressure

1) Integral pressure
2) Differential pressure

If the pressure is not dependent on the volume
(large systems):

=

New Pressure Definition
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Cylindrical Pore
Liquid droplet inside pore in 

equilibrium with vapor phase

With drying layer
between liquid and 

pore wall

Without drying layer
between liquid and 

pore wall
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Cylindrical Pore

• In Equilibrium the compressional
energy must be the same in both
REV’s*

• The internal compressional energy is 
an additive variable [7]

* REV = Representative Elementary Volume

Liquid droplet inside pore in 
equilibrium with vapor phase

With drying layer
between liquid and 

pore wall

Without drying layer
between liquid and 

pore wall
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Two Phase System Within a Pore 
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Cylindrical Pore

• In Equilibrium the compressional
energy must be the same in both
REV’s*

• The internal compressional energy is 
an additive variable [7]

* REV = Representative Elementary Volume

Liquid droplet inside pore in 
equilibrium with vapor phase

With drying layer
between liquid and 

pore wall

Without drying layer
between liquid and 

pore wall

Slit  Pore
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Layer between
liquid and pore 
wall
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kinetic energy

contribution

pairwise energy

contribution

The Onion-Technique

Layer between
liquid and pore 
wall



Pressure Variations Across the Pore
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Pressure Variations Across the Pore
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Pressure Variations Across the Pore
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Compute Vd via equimolar surface



Pressure Variations Across the Pore
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• Pressure constant in the centrum of the pore

• Pressure decreases close to pore wall

• Difference between REVliquid and REVvapor assigned to 
the compressional energy of the layer (not included
in the pressure calculation)Compute Vd via equimolar surface



• Slope is the surface tension      between liquid 

and pore wall

Surface Contribution (Liquid – Pore Wall)
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• inverse radius of the pore was multiplied with 

the pre-factors derived in the theory

• the surface tension decreases with 

increasing temperature

Gives us confidence that
we attributed this pressure
contribution in a right way

Surface tension
independent of geometry

Hydrophobic

Slightly
Hydrophobic

Hydrophilic • No statement about the hydrophilic case

• Extension goes nicely through x = 0 / y = 0



Surface Contribution (Liquid – Vapor)
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Cylindrical Pore

radiusm =  measured radius of meniscus

• Extension of the linear fit goes 

nicely through x = 0 / y = 0

• Slope is the surface tension      

between liquid and vapor

39

Gives us confidence that
we attributed this pressure
contribution in a right way



Disjoining Pressure
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Cylindrical Pore Slit Pore • Disjoining pressure
independent of
geometry

• Disjoining pressure
appears to be 
constant

• Disjoining pressure
dependent on
temperature

• Negative disjoining
pressure in 
hydrophilic pore

pd
pd

Vd/V Vd/V

pd = disjoining pressure Vd = volume of drying layer V = volume of pore



Summary
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• Defined the pressures in a two-phase confined system in terms of 
the compressional energy

• The differential and integral pressures are defined following Hill

• Assisted by a new procedure, the onion-technique, we obtained 
the disjoining pressure which is characteristic and possible to 
determine for hydrophobic systems

• We found a procedure to find this pressure using molecular 
dynamics simulations
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Thank you for your attention!

Thanks to the Norwegian Research Council for their center of 
excellence funding scheme and UNINETT Sigma2 - the National 
Infrastructure for High Performance Computing and Data 
Storage in Norway



Sources

43

[1] - https://www.hindustantimes.com/world-news/cape-town-faces-day-zero-
water-crisis-highlights-city-s-rich-poor-divide/story-
M9e5lOjXhXYYLt4M8hYzAN.html

[2] - https://qz.com/africa/1525526/cape-towns-day-zero-water-shortage-fear-
spreads-in-south-africa/

[3] - https://www.stuff.co.nz/nelson-mail/news/110556228/severe-water-
restrictions-to-bite-as-drought-could-cost-over-100-million

[4] - https://www.stuff.co.nz/nelson-mail/news/110556228/severe-water-
restrictions-to-bite-as-drought-could-cost-over-100-million

[6] - Anna Kang & Christopher Weyant - You Are Not Small

[5] - https://onlinelibrary.wiley.com/doi/abs/10.1002/wcc.81

[7] - Kjelstrup, S., Bedeaux, D., Hansen, A., Hafskjold, B., & Galteland, O. (2018). Non-isothermal
transport of multi-phase fluids in porous media. Constitutive equations. Frontiers in Physics, 6, 150.



44

Thermal Transport Inside Nanopores



State of the Art 
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• No theory
• No information about the membrane

• Theory:
Dependence of the equilibrium vapor
pressure on the hydraulic pressure



Simulation System
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System 1 System 2

• No pressure difference

• Temperature difference
with two thermostats

• Pressure difference by 
reflective membrane

• Temperature difference
with two thermostats

p1 - p

Reflective Membrane



Temperature Along the Pore
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Thot = 0.70/Tcold = 0.65 Thot = 0.73 / Tcold = 0.62

Thot = 0.75 / Tcold = 0.60
Thot = 0.77 / Tcold = 0.58

• 4 Different 
temperature
gradients

• Temperature
independent of the
pressure

TT

TT

System Length System Length

System Length System Length



Pressure
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• Vapor pressure
independent of hydraulic
pressure

• Depending on pressure
fluid pushes into pore

System Length System Length

System Length System Length

pp

pp



Mass flux
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Jm Jm

Jm Jm

Pore Radius Pore Radius

Pore Radius Pore Radius

• Mass flux independent
of pressure

• Mass flux reaches
plateau

Mass flux in segment



Temperature Gradient
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• Exponential
dependence of mass
flux towards
temperature gradient

Jm

dT/dz

z
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Thank you for your attention!

Thanks to the Norwegian Research Council for their center of 
excellence funding scheme and UNINETT Sigma2 - the National 
Infrastructure for High Performance Computing and Data 
Storage in Norway
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Backup



Drying Layer Thickness
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Cylindrical Pore Slit Pore



Drying Layer Thickness with Liquid Pressure
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Cylindrical Pore Slit Pore


