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Aim, method and results

• Aim: Understand the driving forces for transport processes in nano-porous media.

We are interested in the pressure in particular.

• Method: Non-equilibrium thermodynamics, Hill’s thermodynamics of small systems1

and molecular dynamics simulations.

• Results: We find an expression for the entropy production of a non-isothermal

multi-phase fluid in a pressure gradient. We find that the integral pressure, p̂, as
defined by Hill, is needed to understand the pressures in nano-porous media.

1
Hill, T. L. (1963). Thermodynamics of small systems
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Motivation

• Confinement changes the equations of

state2,3

• Capillary condensation pressure of

ethanol p plotted against pore size rp.

• Can we take confinement into account

in the equation of the state?

2
Tan, S. P., & Piri, M. (2015). Equation-of-state modeling of confined-fluid phase equilibria in nanopores. Fluid Phase Equilibria, 393, 48-63.

3
Barsotti, E., Tan, S. P., Piri, M., & Chen, J. H. (2018). Phenomenological Study of Confined Criticality: Insights from the Capillary Condensation of Propane,

n-Butane, and n-Pentane in Nanopores. Langmuir, 34(15), 4473-4483.
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Non-isothermal transport of two-phase fluid

• Consider a representative

elementary volume (REV)

• We define the volume, mass, internal energy of the

REV

V REV , MREV , UREV

• The internal energy is an Euler homogeneous

function, so we can define

T ≡
(

∂U

∂S

)
V,Mi

, p ≡ −
(

∂U

∂V

)
S,Mi

, µi ≡
(

∂U

∂Mi

)
S,V,Mj

• We find the entropy production of non-isothermal

two-phase fluid transport in pressure gradient
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Non-isothermal transport of two-phase fluid

• The entropy production is found to be

σ = J ′
q∇

( 1
T

)
− JV

1
T

∇p + vD
ρn

T
∇µc

n

• This gives the flux-force relationships

J ′
q = lqq∇

( 1
T

)
− lqw

1
T

∇p − lqn
1
T

∇µn,T

JV = lwq∇
( 1

T

)
− lww

1
T

∇p − lwn
1
T

∇µn,T

vD = lnq∇
( 1

T

)
− lnw

1
T

∇p − lnn
1
T

∇µn,T
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The integral pressure p̂ of a small system

• By considering an ensemble of N small systems, we get the Hill-Gibbs relation,

dUt = TdSt − pdVt + µ · dN t + εdN , ε ≡
(

∂Ut

∂N

)
St,Vt,N t

• The sub-division potential ε is the change in internal energy as the number of small

systems changes, with constant total entropy, volume and number of particles
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The integral pressure p̂ of a small system

dUt = TdSt − pdVt + µ · dN t + εdN

• By rewriting the total volume as Vt = V N we find

dUt = TdSt − pNdV + µ · dN t + (ε − pV )dN

• We can identify the Grand potential Υ and the integral pressure p̂

−Υ = −(ε − pV ) = p̂V (1)
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The integral pressure p̂ of a small system

• The differential pressure p relates to the integral pressure p̂

p = ∂(p̂V )
∂V

= p̂ + V

(
∂p̂

∂V

)
• The integral pressure p̂ is the same everywhere in a small system. This is the

equilibrium condition.

• For a large system the differential and integral pressures are the same

p̂ = p
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The compressional energy, −Υ = p̂V

• The grand potential is the sum of all bulk, surface and line contributions

−Υ = p̂V =
m∑

α=1
p̂αV α −

m∑
α>β=1

γ̂αβΩαβ +
m∑

α>β>γ=1
τ̂αβγΛαβ

• The pressure of a REV containing a single fluid f and porous medium r the integral

pressure becomes,

p̂ = p̂f φ + p̂r(1 − φ) − γ̂frΩfr
s

• Where φ = V f /V is the porosity, and Ωs = Ω/V is the specific surface area.
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Example: A single spherical phase in a fluid

• Total compressional energy becomes

pV = pf V f + p̂rV r − γfrΩfr

• A and B is in equilibrium, p = pf

p̂r = pf + γfr Ωfr

V r
= pf + 3γfr

R

• By calculating the differential pressure

pr, we find the Young-Laplace equation

pr = pf + γfr ∂Ωfr

∂V r
= pf + 2γfr

R
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Implications for non-equilibrium

• From the entropy production we find that the isothermal mass flux is4,5.

Jm = −k∇p

• By inserting the equation for the pressure we find

Jm = −k∇(pf φ + p̂r(1 − φ) − γfrΩfr
s )

• Gradient in porosity ∇φ 6= 0 gives rise to mass transport due to an entropic force

• Gradient in surface tension ∇γfr 6= 0 gives rise to non-Darcy flow

4
Kjelstrup, S., Bedeaux, D., Hansen, A., Hafskjold, B., & Galteland, O. (2018). Non-isothermal transport of multi-phase fluids in porous media. The entropy

production. Frontiers in Physics, 6, 126.

5
Kjelstrup, S., Bedeaux, D., Hansen, A., Hafskjold, B., & Galteland, O. (2018). Non-isothermal transport of multi-phase fluids in porous media. Constitutive

equations. Frontiers in Physics, 6, 150.
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Molecular dynamics simulations

• Integrating Newton’s second law

mi
d2ri

dt2 = −
∑

j

∂uij

∂rij

• uij is the potential energy between

particle.

• Lennard-Jones/Spline potential

• Numerical calculation of the pressure of

the fluid

pf V f = 1
3

〈∑
i

mi(vi · vi)
〉

−1
6

〈∑
〈i,j〉

(rij · f ij)
〉
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Single sphere in equilibrium

• Numerical calculation of the pressure

pf V f = 1
3

〈∑
i

mi(vi · vi)
〉

− 1
6

〈∑
〈i,j〉

(rij · f ij)
〉

• Fit p̂r and γfr

pV = pf V f + p̂rV r − γfrΩfr
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Several spheres in equilibrium

• Numerical calculation of the pressure

pf V f = 1
3

〈∑
i

mi(vi · vi)
〉

− 1
6

〈∑
〈i,j〉

(rij · f ij)
〉

• Fit p̂r and γfr

pV = pf V f + p̂rV r − γfrΩfr
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Fitted p̂r and γfr
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Nano-porous medium in a pressure gradient

• Use fitted rock pressure p̂r and surface

tension γwr to determine pressure

inside porous medium

• If we average over the REV the pressure

gradient becomes smooth.
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Isothermal fluid flow in nano-porous medium

• Create a pressure difference across the

system with the “Reflecting particle

method”
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Two-phase liquid

• Make two liquids immiscible by α < 1

uij(r) =



∞

4εij

[(
σij − Rij

r − Rij

)12
− α

(
σij − Rij

r − Rij

)6
]

aij(r − rc,ij)2 + bij(r − rc,ij)3

0

.
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Phase diagram of a two-phase liquid
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Summary and conclusion

• We have used that the grand potential is additive, to find an expression of the

pressure of a nano-porous medium

• Hill’s thermodynamics of small systems is essential to bridge the gap from this

equation to established equations such as the Young-Laplace equation

• These concepts can be used in systems where the surface area and volume of the

porous media is known, such as in molecular dynamics
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