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Aim, method and results

¢ Aim: Understand the driving forces for transport processes in nano-porous media.
We are interested in the pressure in particular.

e Method: Non-equilibrium thermodynamics, Hill's thermodynamics of small systems®
and molecular dynamics simulations.

e Results: We find an expression for the entropy production of a non-isothermal
multi-phase fluid in a pressure gradient. We find that the integral pressure, p, as
defined by Hill, is needed to understand the pressures in nano-porous media.

1Hi||, T. L. (1963). Thermodynamics of small systems
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zTan, S. P.,, & Piri, M. (2015). Equation-of-state modeling of confined-fluid phase equilibria in nanopores. Fluid Phase Equilibria, 393, 48-63.

3Barsotti, E., Tan, S. P, Piri, M., & Chen, J. H. (2018). Phenomenological Study of Confined Criticality: Insights from the Capillary Condensation of Propane,
n-Butane, and n-Pentane in Nanopores. Langmuir, 34(15), 4473-4483.



<l Porelab Non-isothermal transport of two-phase fluid

: . e We define the volume, mass, internal energy of the
e Consider a representative eV

elementary volume (REV) VREV

MREV UREV

) )

e The internal energy is an Euler homogeneous
function, so we can define

TRIeM | e T "AT _[oU _[oU [ aU
o )/ P_AP Jh= Y2 yP=—\| 575 s Mg =
a8 V,M; ov S, M; oM; S,V,M;

r Hi= Ay

L ¢ We find the entropy production of non-isothermal
two-phase fluid transport in pressure gradient
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Non-isothermal transport of two-phase fluid

e The entropy production is found to be
1 1 p
! n
o= qu (T) - Jvavp—i- ’UDfT Vufl

e This gives the flux-force relationships

1 1 1
J(/J = quV (T) —= lquVp - lqnfvﬂn,T

1 1 1

Jv = lqu (T) lwavP - lwnfvﬂn,T
1

Up = lan (T

1 1
lnw T - lnn T n
) T Vp T Vpin,T



W Porelab The integral pressure j of a small system

e By considering an ensemble of A/ small systems, we get the Hill-Gibbs relation,

oU,
dU; = TdS; — pdV; + p - ANy + edN, 6E<—t>
N/ s, vi.N,

e The sub-division potential ¢ is the change in internal energy as the number of small
systems changes, with constant total entropy, volume and number of particles
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The integral pressure p of a small system

dUt :TdSt —pdV;g-F/J:'dNt—i‘EdN

e By rewriting the total volume as V;, = VN we find
dUy = TdS; — pNdV + p - dN¢ + (e — pV)dN
¢ We can identify the Grand potential T and the integral pressure p

—T=—(e—pV)=pV
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The integral pressure p of a small system

¢ The differential pressure p relates to the integral pressure p

oY) ()
P=—gy ~PHVigy

e The integral pressure p is the same everywhere in a small system. This is the
equilibrium condition.

e For a large system the differential and integral pressures are the same

pP=p
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The compressional energy, — T = pV/

¢ The grand potential is the sum of all bulk, surface and line contributions

m m m
~T = = Zﬁava _ Z ,AYOCBQ%B + Z safy pap
a=1 a>p=1 a>f>vy=1

e The pressure of a REV containing a single fluid f and porous medium r the integral
pressure becomes,

p=po+i(1-9) - 37Ql

e Where ¢ = Vf/V is the porosity, and Q5 = 2/V is the specific surface area.
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Example: A single spherical phase in a fluid

e Total compressional energy becomes

pV =p/ VI 4 VT —4IrQfT A B
e AandBis in equilibrium, p = p/ VI '
er 3,7fr i
Ar — pf L AT —pf : : :
A s E E v :
e By calculating the differential pressure :
p", we find the Young-Laplace equation : : :

f"alfr — pf + 27]%
ovr R

pr=p" +v
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Implications for non-equilibrium

From the entropy production we find that the isothermal mass flux is*>>.

Jm = —kVp

By inserting the equation for the pressure we find

Im = —kV (I ¢+ 9" (1 — ¢) — 47"

Gradient in porosity V¢ # 0 gives rise to mass transport due to an entropic force

Gradient in surface tension nyf’” # (0 gives rise to non-Darcy flow

4Kjelstrup, S., Bedeaux, D., Hansen, A., Hafskjold, B., & Galteland, O. (2018). Non-isothermal transport of multi-phase fluids in porous media. The entropy
production. Frontiers in Physics, 6, 126.

SKjeIstrup, S., Bedeaux, D., Hansen, A., Hafskjold, B., & Galteland, O. (2018). Non-isothermal transport of multi-phase fluids in porous media. Constitutive
equations. Frontiers in Physics, 6, 150.
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Molecular dynamics simulations

Integrating Newton'’s second law
d TZ . Z Ouij
81"@'

u;jis the potential energy between
particle.

Lennard-Jones/Spline potential

Numerical calculation of the pressure of

the fluid
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Single sphere in equilibrium

e Numerical calculation of the pressure
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Several spheres in equilibrium

e Numerical calculation of the pressure

1
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e Fitp" and ~/"
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<l Porelab Nano-porous medium in a pressure gradient

e Use fitted rock pressure p" and surface
tension v*" to determine pressure Smallest REV
inside porous medium A

o If we average over the REV the pressure a)
gradient becomes smooth.
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Isothermal fluid flow in nano-porous medium

e Create a pressure difference across the
system with the “Reflecting particle

method” le=2
gl.5 .
-~ -
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<l Porelab Two-phase liquid

o Make two liquids immiscible by o < 1

12 6
Al Oij —Rij 1, Oij —Rij
U (’I“) = * it — Rij T — Rij

@i (1 — 1) + bij (r = 7e,ij)°
0
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Phase diagram of a two-phase liquid
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Summary and conclusion

e We have used that the grand potential is additive, to find an expression of the
pressure of a nano-porous medium

¢ Hill's thermodynamics of small systems is essential to bridge the gap from this
equation to established equations such as the Young-Laplace equation

e These concepts can be used in systems where the surface area and volume of the
porous media is known, such as in molecular dynamics

20
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