

NTINU Norwegian University of Science and Technology UIO **: University of Oslo**

Molecular dynamics simulations of fluid flow in nano-porous media

Olav Galteland, Dick Bedeaux, Bjørn Hafskjold, Signe Kjelstrup

PoreLab, Department of Chemistry, Norwegian University of Science and Technology

29th of August 2019

- Aim: Understand the driving forces for transport processes in nano-porous media. We are interested in the pressure in particular.
- Method: Non-equilibrium thermodynamics, Hill's thermodynamics of small systems¹ and molecular dynamics simulations.
- Results: We find an expression for the entropy production of a non-isothermal multi-phase fluid in a pressure gradient. We find that the integral pressure, \hat{p} , as defined by Hill, is needed to understand the pressures in nano-porous media.

Motivation

- Confinement changes the equations of state^{2,3}
- Capillary condensation pressure of ethanol *p* plotted against pore size *r_p*.
- Can we take confinement into account in the equation of the state?

²Tan, S. P., & Piri, M. (2015). Equation-of-state modeling of confined-fluid phase equilibria in nanopores. Fluid Phase Equilibria, 393, 48-63.

³Barsotti, E., Tan, S. P., Piri, M., & Chen, J. H. (2018). Phenomenological Study of Confined Criticality: Insights from the Capillary Condensation of Propane, n-Butane, and n-Pentane in Nanopores. Langmuir, 34(15), 4473-4483.

Non-isothermal transport of two-phase fluid

• Consider a representative elementary volume (REV)

• We define the volume, mass, internal energy of the REV

 $V^{REV}, M^{REV}, U^{REV}$

• The internal energy is an Euler homogeneous function, so we can define

$$T \equiv \left(\frac{\partial U}{\partial S}\right)_{V,M_i}, p \equiv -\left(\frac{\partial U}{\partial V}\right)_{S,M_i}, \mu_i \equiv \left(\frac{\partial U}{\partial M_i}\right)_{S,V,M_i}$$

• We find the entropy production of non-isothermal two-phase fluid transport in pressure gradient

• The entropy production is found to be

$$\sigma = J'_q \nabla \left(\frac{1}{T}\right) - J_V \frac{1}{T} \nabla p + v_D \frac{\rho_n}{T} \nabla \mu_n^c$$

• This gives the flux-force relationships

$$J'_{q} = l_{qq} \nabla \left(\frac{1}{T}\right) - l_{qw} \frac{1}{T} \nabla p - l_{qn} \frac{1}{T} \nabla \mu_{n,T}$$
$$J_{V} = l_{wq} \nabla \left(\frac{1}{T}\right) - l_{ww} \frac{1}{T} \nabla p - l_{wn} \frac{1}{T} \nabla \mu_{n,T}$$
$$v_{D} = l_{nq} \nabla \left(\frac{1}{T}\right) - l_{nw} \frac{1}{T} \nabla p - l_{nn} \frac{1}{T} \nabla \mu_{n,T}$$

• By considering an ensemble of ${\cal N}$ small systems, we get the Hill-Gibbs relation,

$$dU_t = T dS_t - p dV_t + \boldsymbol{\mu} \cdot d\boldsymbol{N}_t + \varepsilon d\mathcal{N}, \qquad \varepsilon \equiv \left(\frac{\partial U_t}{\partial \mathcal{N}}\right)_{S_t, V_t, \boldsymbol{N}_t}$$

• The sub-division potential *ε* is the change in internal energy as the number of small systems changes, with constant total entropy, volume and number of particles

$$\mathrm{d}U_t = T\mathrm{d}S_t - p\mathrm{d}V_t + \boldsymbol{\mu}\cdot\mathrm{d}\boldsymbol{N}_t + \varepsilon\mathrm{d}\boldsymbol{\mathcal{N}}$$

• By rewriting the total volume as $V_t = V \mathcal{N}$ we find

$$\mathrm{d}U_t = T\mathrm{d}S_t - p\mathcal{N}\mathrm{d}V + \boldsymbol{\mu}\cdot\mathrm{d}\boldsymbol{N}_t + (\varepsilon - pV)\mathrm{d}\mathcal{N}$$

• We can identify the Grand potential Υ and the integral pressure \hat{p}

$$-\Upsilon = -(\varepsilon - pV) = \hat{p}V \tag{1}$$

• The differential pressure p relates to the integral pressure \hat{p}

$$p = \frac{\partial(\hat{p}V)}{\partial V} = \hat{p} + V\left(\frac{\partial\hat{p}}{\partial V}\right)$$

- The integral pressure \hat{p} is the same everywhere in a small system. This is the equilibrium condition.
- For a large system the differential and integral pressures are the same

$$\hat{p} = p$$

• The grand potential is the sum of all bulk, surface and line contributions

$$-\Upsilon = \hat{p}V = \sum_{\alpha=1}^{m} \hat{p}^{\alpha}V^{\alpha} - \sum_{\alpha>\beta=1}^{m} \hat{\gamma}^{\alpha\beta}\Omega^{\alpha\beta} + \sum_{\alpha>\beta>\gamma=1}^{m} \hat{\tau}^{\alpha\beta\gamma}\Lambda^{\alpha\beta}$$

• The pressure of a REV containing a single fluid f and porous medium r the integral pressure becomes,

$$\hat{p} = \hat{p}^f \phi + \hat{p}^r (1 - \phi) - \hat{\gamma}^{fr} \Omega_s^{fr}$$

• Where $\phi = V^f/V$ is the porosity, and $\Omega_s = \Omega/V$ is the specific surface area.

Example: A single spherical phase in a fluid

Total compressional energy becomes

$$pV = p^f V^f + \hat{p}^r V^r - \gamma^{fr} \Omega^{fr}$$

• A and B is in equilibrium, $p = p^f$

$$\hat{p}^r = p^f + \gamma^{fr} \frac{\Omega^{fr}}{V^r} = p^f + \frac{3\gamma^{fr}}{R}$$

• By calculating the differential pressure p^r , we find the Young-Laplace equation

$$p^r = p^f + \gamma^{fr} \frac{\partial \Omega^{fr}}{\partial V^r} = p^f + \frac{2\gamma^{fr}}{R}$$

• From the entropy production we find that the isothermal mass flux is^{4,5}.

$$J_m = -k\nabla p$$

• By inserting the equation for the pressure we find

$$J_m = -k\nabla(p^f\phi + \hat{p}^r(1-\phi) - \gamma^{fr}\Omega_s^{fr})$$

- Gradient in porosity $\nabla \phi \neq 0$ gives rise to mass transport due to an entropic force
- Gradient in surface tension $\nabla \gamma^{fr} \neq 0$ gives rise to non-Darcy flow

⁴ Kjelstrup, S., Bedeaux, D., Hansen, A., Hafskjold, B., & Galteland, O. (2018). Non-isothermal transport of multi-phase fluids in porous media. The entropy production. Frontiers in Physics, 6, 126.

⁵Kjelstrup, S., Bedeaux, D., Hansen, A., Hafskjold, B., & Galteland, O. (2018). Non-isothermal transport of multi-phase fluids in porous media. Constitutive equations. Frontiers in Physics, 6, 150.

Molecular dynamics simulations

Integrating Newton's second law

$$m_i \frac{d^2 \boldsymbol{r}_i}{dt^2} = -\sum_j \frac{\partial u_{ij}}{\partial \boldsymbol{r}_{ij}}$$

- u_{ij} is the potential energy between particle.
- Lennard-Jones/Spline potential
- Numerical calculation of the pressure of the fluid

$$p^{f}V^{f} = rac{1}{3} \left\langle \sum_{i} m_{i}(\boldsymbol{v}_{i} \cdot \boldsymbol{v}_{i})
ight
angle - rac{1}{6} \left\langle \sum_{\langle i,j
angle} (\boldsymbol{r}_{ij} \cdot \boldsymbol{f}_{ij})
ight
angle$$

Single sphere in equilibrium

a)

• Numerical calculation of the pressure

$$p^{f}V^{f} = \frac{1}{3} \left\langle \sum_{i} m_{i}(\boldsymbol{v}_{i} \cdot \boldsymbol{v}_{i}) \right\rangle - \frac{1}{6} \left\langle \sum_{\langle i,j \rangle} (\boldsymbol{r}_{ij} \cdot \boldsymbol{f}_{ij}) \right\rangle$$
b)

• Fit \hat{p}^r and γ^{fr}

$$pV = p^f V^f + \hat{p}^r V^r - \gamma^{fr} \Omega^{fr}$$

Several spheres in equilibrium

• Numerical calculation of the pressure

$$p^{f}V^{f} = \frac{1}{3} \left\langle \sum_{i} m_{i}(\boldsymbol{v}_{i} \cdot \boldsymbol{v}_{i}) \right\rangle - \frac{1}{6} \left\langle \sum_{\langle i,j \rangle} (\boldsymbol{r}_{ij} \cdot \boldsymbol{f}_{ij}) \right\rangle \text{ b} \right)$$

• Fit \hat{p}^r and γ^{fr}

$$pV = p^f V^f + \hat{p}^r V^r - \gamma^{fr} \Omega^{fr}$$

Nano-porous medium in a pressure gradient

- Use fitted rock pressure \hat{p}^r and surface tension γ^{wr} to determine pressure inside porous medium
- If we average over the REV the pressure gradient becomes smooth.

Isothermal fluid flow in nano-porous medium

• Create a pressure difference across the system with the "Reflecting particle method"

Two-phase liquid

• Make two liquids immiscible by $\alpha < 1$

$$u_{ij}(r) = \begin{cases} \infty \\ 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij} - R_{ij}}{r - R_{ij}} \right)^{12} - \alpha \left(\frac{\sigma_{ij} - R_{ij}}{r - R_{ij}} \right)^6 \right] \\ a_{ij}(r - r_{c,ij})^2 + b_{ij}(r - r_{c,ij})^3 \\ 0 \end{cases}$$

Phase diagram of a two-phase liquid

- We have used that the grand potential is additive, to find an expression of the pressure of a nano-porous medium
- Hill's thermodynamics of small systems is essential to bridge the gap from this equation to established equations such as the Young-Laplace equation
- These concepts can be used in systems where the surface area and volume of the porous media is known, such as in molecular dynamics

- 1. Hill, T. L. (1963). Thermodynamics of small systems
- 2. Tan, S. P., & Piri, M. (2015). Equation-of-state modeling of confined-fluid phase equilibria in nanopores. Fluid Phase Equilibria, 393, 48-63.
- 3. Barsotti, E., Tan, S. P., Piri, M., & Chen, J. H. (2018). Phenomenological Study of Confined Criticality: Insights from the Capillary Condensation of Propane, n-Butane, and n-Pentane in Nanopores. Langmuir, 34(15), 4473-4483.
- 4. Galteland, O., Bedeaux, D., Kjelstrup, S., & Hafskjold, B. (2019). Pressures inside a nano-porous medium. The case of a single phase fluid. Frontiers in Physics, 7, 60.
- 5. Kjelstrup, S., Bedeaux, D., Hansen, A., Hafskjold, B., & Galteland, O. (2018). Non-isothermal transport of multi-phase fluids in porous media. The entropy production. Frontiers in Physics, 6, 126.
- 6. Kjelstrup, S., Bedeaux, D., Hansen, A., Hafskjold, B., & Galteland, O. (2018). Non-isothermal transport of multi-phase fluids in porous media. Constitutive equations. Frontiers in Physics, 6, 150.

Thank you!

and thanks to the Norwegian Research Council for their center of excellence funding scheme and UNINETT Sigma2 - the National Infrastructure for High Performance Computing and Data Storage in Norway