Physical Validation of Properties of Small Grand Canonical Systems

Vilde Bråten

Øivind Wilhelmsen, Sondre Kvalvåg Schnell

1Norwegian University of Science and Technology, 2SINTEF

29.08.2019
Small in macroscopic systems

Large in small systems
Surface molecules

Bulk molecules

Unwanted in simulations
Nanosystems
Nanothermodynamics

Isobaric-isothermal
- Macroscopic
 \[G = \mu N \]
- Small system
 \[G = \hat{\mu} N \]

Grand canonical
- Macroscopic
 \[-pV \]
- Small system
 \[-\hat{p}V \]
Differential

Integral
Small size contribution = excess property

Differential

\[p = p^\infty + p^{\text{small}} \]

Integral

\[\hat{p} = p^\infty + \hat{p}^{\text{small}} \]

\[p = \hat{p} \]

in the macroscopic limit
Nanothermodynamics

Isobaric-isothermal

<table>
<thead>
<tr>
<th>Variable</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>$-\left(\frac{\partial \hat{\mu}N}{\partial T}\right)_{p,N}$</td>
</tr>
<tr>
<td>V</td>
<td>$-\left(\frac{\partial \hat{\mu}N}{\partial T}\right)_{T,N}$</td>
</tr>
<tr>
<td>μ</td>
<td>$-\left(\frac{\partial \hat{\mu}N}{\partial T}\right)_{p,T}$</td>
</tr>
</tbody>
</table>

Grand canonical

<table>
<thead>
<tr>
<th>Variable</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>$\left(\frac{\partial \hat{\rho}V}{\partial T}\right)_{\mu,V}$</td>
</tr>
<tr>
<td>p</td>
<td>$\left(\frac{\partial \hat{\rho}V}{\partial V}\right)_{\mu,T}$</td>
</tr>
<tr>
<td>N</td>
<td>$\left(\frac{\partial \hat{\rho}V}{\partial \mu}\right)_{V,T}$</td>
</tr>
</tbody>
</table>
Challenges

• Many simulations → time consuming

• Calculation of free energies
 – Macroscopic methods does not work for small systems
Grand canonical particle fluctuations
Connection to partition function

\[\hat{\rho}V = k_B T \ln \Xi(\mu, V, T) \]

\[S = \left(\frac{\partial \hat{\rho}V}{\partial T} \right)_{\mu,V} \]

\[p = \left(\frac{\partial \hat{\rho}V}{\partial V} \right)_{\mu,T} \]

\[N = \left(\frac{\partial \hat{\rho}V}{\partial \mu} \right)_{V,T} \]

\[(k_B T)^2 \left(\frac{\partial^2 \ln \Xi}{\partial \mu^2} \right)_{T,V} = \langle N^2 \rangle - \langle N \rangle^2 \]
\[\langle N^2 \rangle - \langle N \rangle^2 \]

\[\kappa_T, C_p, V_i, H_i, G_{ij} \ldots \]
\[\kappa_T = \frac{V}{k_B T} \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle} \]

\[= \kappa_T^\infty + \kappa_T^{\text{small}} \]

\[\kappa_T^{\text{small}} = \frac{\Omega}{V} \kappa_T^{\text{surf}} \]
\[\kappa_T = \kappa_T^\infty + \frac{\Omega}{V} \kappa_T^{\text{surf}} \]
Ensemble check \(^{(2)}\) = Overlapping distribution method \(^{(3)}\)

\[
\frac{1}{\beta} \ln \frac{P(N|\mu_2, T, V)}{P(N|\mu_1, T, V)} = -\Delta(pV) + \Delta\mu N
\]
\[\hat{\rho}V = p^\infty V + \hat{\rho}^{\text{small}} V \]
\(\Delta \hat{p} \) for small systems

\(\Delta \hat{p} = \Delta p \) for reservoir

\(\hat{p} \text{small} \neq \frac{\Omega}{V} \hat{p} \text{surf} \)
Small size contributions

Surface:
\[6\varepsilon_{\text{surf}}(\rho, T)L^2 \]

Line:
\[12\varepsilon_{\text{line}}(\rho, T)L \]

Corner:
\[8\varepsilon_{\text{corner}}(\rho, T) \]

\[\hat{\rho}_{\text{small}}V = 6\varepsilon_{\text{surf}}L^2 + 12\varepsilon_{\text{line}}L + 8\varepsilon_{\text{corner}} \]
\[\Delta \hat{p}V = p^\infty V + 6L^2 \varepsilon_{\text{surf}} + 12L \varepsilon_{\text{line}} + 8 \varepsilon_{\text{corner}} \]
\(\varepsilon^{\text{surf}}, \varepsilon^{\text{line}} \) and \(\varepsilon^{\text{corner}} \) dependency on \(T \) and \(\rho \)

\[
S^{\text{small}} = \left(\frac{\partial \hat{p}^{\text{small}}}{\partial T} \right)_{\mu,V}
\]

\[
p^{\text{small}} = \left(\frac{\partial \hat{p}^{\text{small}}}{\partial V} \right)_{\mu,T}
\]

\[
N^{\text{small}} = \left(\frac{\partial \hat{p}^{\text{small}}}{\partial \mu} \right)_{V,T}
\]
Equation of State

• General in terms of:
 – Shape: , and
 – Ensemble: μVT, NVT and NpT

• Other properties accessible from differentials

$$\kappa_T^{\text{small}} = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial p^{\text{small}}} \right)_T$$
Challenges

- Many simulations → time consuming

- Calculation of free energies
 - Macroscopic methods does not work for small systems
Thank you for your attention!