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This Special Issue concerns recent developments of a theory for energy conversion on
the nanoscale, namely nanothermodynamics. The theory applies to porous media, small
surfaces, clusters or fluids under confinement. There are a large number of unsolved issues
in these contexts and present efforts only paint part of the broader picture. We may still ask
questions on how far down in scale we can really use the Gibbs equation. Which theory
can replace the Gibbs equation beyond the thermodynamic limit?

It is well known that confinement can change the equation of the state of a fluid,
but how does confinement change the equilibrium conditions? How do we formulate
equilibrium conditions on the nanoscale, and what are the independent variables? To deal
with equilibrium alone seems a formidable task, let alone how to extend the descriptions
to systems away from equilibrium.

This Special Issue explores in more detail some roads that were opened by Hill when
he launched his thermodynamics for small systems in 1963. His method has, however, not
gained much attention since it was published. We now consider this an underused oppor-
tunity. The theoretical developments in nanothechnology need to follow the experimental
progress, and that is rapid. It is our ambition, therefore, to aspire to an increased effort
that can further develop suitable theoretical tools and methods in nanoscience. All ten
contributions to this Special Issue can be seen as efforts to support, enhance and validate
such theoretical developments.

The first two papers [1,2] demonstrate the use of Hill’s nanothermodynamics in new
settings. The Small System Method for the determination of thermodynamic factors has
already been successfully applied in many contexts. The method exploits the small system’s
scaling properties or size dependencies. In this Special Issue, Dawass et al. [1] show how the
analysis of Kirkwood Buff integrals can be made more accurate. They conclude that this is
possible, by applying three methods to compute these integrals in the thermodynamic limit.
Radial distribution functions (RDFs) of finite systems are used. Tripathy et al. [2] extend the
Small System Method further to also characterize the hydration shell compressibility of a
generally hydrophobic polymer in water. They show how this finding may be generalized
to study hydrophobic interactions.

The next three papers [3–5] concern the pressure of confined fluids and their descrip-
tion in equilibrium. Rauter et al. show [3] that the integral pressure is constant across
phase boundaries and that this finding is equivalent to assuming validity of Young’s and
Young–Laplace’s law. In agreement with this, Máté Erdős et al. [4] document the inter-
relation of the differential and the integral pressure. Galteland et al. [5] show how the
disjoining pressure can be understood using Hill’s theory, and present Maxwell relations
for small systems.

The issue contains three extensions of Hill’s theory, see papers [6–8]. Hill stated that
small systems do not obey Legendre transforms, a clear disadvantage. Beering et al. [6]
have been able to show for the first time in their article “A Legendre–Fenchel Transform for
Molecular Stretching Energies” that an alternative for small systems lies in the Legendre–
Fenchel transform. This is an extension of Hill’s theory that may prove useful in practice.
Strøm et al. [7] have been able to extend on Hill’s examples, by considering adsorbed films
on very small clusters. Their article “When Thermodynamic Properties of Adsorbent Films
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Depends on Size” offers a new way to deal with adsorption on, say, atmospheric particles.
In yet another article, Strøm et al. [8] were able to compute and illustrate the equation of
state of an ideal gas when it becomes confined. Large discrepancies from normal ideal gas
behavior are found. The equation of state can be computed exactly for an ideal gas using
statistical mechanics and is illustrated by molecular dynamics simulations.

The last two papers [9,10] are special. The only experimental paper in this issue is
provided by Men’shikov et al. [9]. The authors show how sensitive the structure is to
environmental conditions, and how the results for adsorption enthalpy vary with tempera-
ture, carbon porosity and surface area. Therefore, there are clear indications of multilayer
formations on some of their activated carbons, and abnormal effects, which may benefit
from other theories. So far, the treatment of these data has followed the classical scheme. Is
there an alternative route, simpler than that of Hill, to nanothermodynamics? Rodrigo de
Miguel and J. Miguel Rubi [10] propose this in their study on “Statistical Mechanics at Strong
Coupling: A Bridge between Landsberg’s Energy Levels and Hill’s Nanothermodynamics”. They
review and show the connection between three theories, including Hill’s, proposed for the
thermodynamic treatment of systems that do not obey the additivity ansatz of classical
thermodynamics.
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Abstract: Kirkwood-Buff (KB) integrals provide a connection between microscopic properties
and thermodynamic properties of multicomponent fluids. The estimation of KB integrals using
molecular simulations of finite systems requires accounting for finite size effects. In the small
system method, properties of finite subvolumes with different sizes embedded in a larger volume
can be used to extrapolate to macroscopic thermodynamic properties. KB integrals computed
from small subvolumes scale with the inverse size of the system. This scaling was used to find
KB integrals in the thermodynamic limit. To reduce numerical inaccuracies that arise from this
extrapolation, alternative approaches were considered in this work. Three methods for computing
KB integrals in the thermodynamic limit from information of radial distribution functions (RDFs)
of finite systems were compared. These methods allowed for the computation of surface effects.
KB integrals and surface terms in the thermodynamic limit were computed for Lennard-Jones (LJ) and
Weeks-Chandler-Andersen (WCA) fluids. It was found that all three methods converge to the same
value. The main differentiating factor was the speed of convergence with system size L. The method
that required the smallest size was the one which exploited the scaling of the finite volume KB integral
multiplied by L. The relationship between KB integrals and surface effects was studied for a range
of densities.

Keywords: nanothermodynamics; Kirkwood-Buff integrals; surface effects; molecular dynamics

1. Introduction

Using knowledge of the molecular structure of liquids to predict their macroscopic behavior
is important for several applications [1–5]. One of the most rigorous solution theories is the
Kirkwood–Buff (KB) theory, where a sound connection between macroscopic and microscopic
properties for isotropic multicomponent fluids is established [6,7]. Kirkwood and Buff derived a

Nanomaterials 2020, 10, 771; doi:10.3390/nano10040771 www.mdpi.com/journal/nanomaterials3
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relation between several thermodynamic properties and integrals of radial distribution functions
(RDFs) over infinite and open volumes G∞

αβ in the grand-canonical ensemble [6]:

G∞
αβ =

∫ ∞

0

[
g∞

αβ(r)− 1
]

4πr2dr (1)

where r is the particle distance, and g∞
αβ(r) is the RDF, of the infinitely large system, for species α

and β. KB integrals can also be expressed in terms of density fluctuations in open systems [6–9].
While KB integrals were derived for open and infinite systems, many studies use molecular simulation
to estimate KB integrals, where only finite systems can be studied. In Reference [10], a review of the
methods available in literature for computing KB integrals from molecular simulations is presented.

To accurately estimate G∞
αβ, it is possible to use KB integrals of finite and open subvolumes V

embedded in larger reservoirs. In this way, the grand-canonical ensemble, in which KB integrals in
the thermodynamic limit were derived, is mimicked. This approach is referred to as the small system
method (SSM) [5,11,12]. According to the SSM, properties of small subvolumes, that can be of the
order of a few molecular diameters, are treated in terms of thermodynamics of small systems rather
than classical thermodynamics. According to Hill’s thermodynamics of small systems, properties of
open embedded subvolumes scale with the inverse size of the subvolumes [13,14]. This also applies to
KB integrals of finite subvolumes, GV

αβ [10,12]. For a specific system, GV
αβ computed with subvolumes

of different sizes, scales linearly with the inverse size of the subvolume [10,12,15,16]. For spherical
subvolumes V inside a simulation box, we have

GV
αβ(L) = G∞

αβ +
F∞

L
(2)

where L = 6V/A is the characteristic length of the subvolume V with surface area A. For a sphere, L is
the diameter (L = 2R). In Equation (2), F∞ is related to surface effects of the subvolume. Using Hill’s
formulation of small-system thermodynamics [14], it was shown that properties of small systems can
be written in terms of volume and surface contributions [17]. In Reference [17], Hill’s thermodynamics
were applied to several properties, including pressure. From the volume contribution of pressure,
the homogeneous pressure is obtained, while the Gibbs surface relation was obtained from the surface
contribution [17]. This last contribution is proportional to the surface tension. In the case of KB integrals,
the surface term, or contribution, F∞, can also be defined from Gibbs surface equation [17]. From a
microscopic point of view, it originates from interactions between molecules inside the subvolume
and molecules across the boundary of the subvolume [12,15]. These surface effects vanish in the
thermodynamic limit, but for systems used in molecular dynamics (MD) simulations these effects
cannot be neglected [18]. As a result, the quantitative and qualitative study of surface contributions is
essential for estimating G∞

αβ from integrals of finite subvolumes GV
αβ.

KB integrals of finite and open subvolumes GV
αβ are defined in terms of fluctuations in the number

of particles, which relate to double integrals of RDFs over the subvolume V [12],

GV
αβ ≡ 1

V

∫
V

∫
V

[
gαβ(r12)− 1

]
dr1dr2 ≡ V

〈NαNβ〉 − 〈Nα〉〈Nβ〉
〈Nα〉〈Nβ〉 − Vδαβ

〈Nβ〉 (3)

where Nα and Nβ are the number of molecules of type α and β, in volume V. The brackets 〈· · · 〉 denote
an ensemble average in an open system. Equation (3) is applicable to isotropic molecular fluids where
the orientations of molecules are already integrated out. While it is possible to compute KB integrals
GV

αβ from fluctuations in the number of particles (i.e., the right hand side of Equation (3)), it is more
practical to use RDFs. RDFs are readily computed by most molecular simulation software packages.
The double integrals in the left hand side of Equation (3) can be transformed to a single integral using
a weight function w(r, L) [12],

4
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GV
αβ =

∫ L

0

[
gαβ(r)− 1

]
w(r, L)dr (4)

The function w(r, L) depends on the geometry of V. For spherical and cubic subvolumes, theoretically
derived functions are available in References [12,16], respectively. It is possible to numerically
obtain the function w(r, L) for an arbitrary shape as shown in Reference [19]. In this work, spherical
subvolumes will be used, for which,

w(r, L) = 4πr2
(

1 − 3x
2

+
x3

2

)
(5)

where x is the dimensionless distance r/L [12,15,16]. The scaling of finite integrals GV with the size of
the subvolumes L is used to compute KB integrals in the thermodynamic limit G∞ (for convenience,
indicies α and β will be dropped from this point onwards). Specifically, G∞ is computed from
extrapolating the linear part of the scaling of GV with 1/L to the limit 1/L → 0 [12,15,17].
A disadvantage of this approach is that a linear regime is not always easily identified [15].

To avoid extrapolating GV , Krüger and Vlugt [16] proposed a direct estimation of KB integrals in
the thermodynamic limit:

G∞ ≈ Gk(L) =
∫ L

0
[g(r)− 1] uk(r)dr (6)

The accuracy of the estimation depends on the function uk(r) [20]. Krüger and Vlugt [16] considered
three different estimations and found that integrals computed using the function u2(r) provided the
best estimation of G∞,

u2(r) = 4πr2
(

1 − 23
8

x3 +
3
4

x4 +
9
8

x5
)

(7)

KB integrals computed using Equations (6) and (7) will be denoted by G2. To derive the expression for
G2, the starting point was the scaling of KB integrals with 1/L. First, an explicit estimation of F∞ in
Equation (2) was derived. In the work of Krüger and Vlugt [16], F∞ has the following form

F∞ =
∫ ∞

0
[g(r)− 1]4πr2

(
−3

2
r
)

dr (8)

It is important to note that the structure of Equation (8) is similar to KB integrals in the thermodynamic
limit (Equation (1)). So, analogous to Equation (2), FV can be defined as,

FV(L) = F∞ +
C
L

(9)

where C is a constant. For finite systems, FV can be computed using

FV ≈
∫ L

0
[g(r)− 1]

(
−3

2
r
)

w(r, L)dr (10)

where the function w(r, L) is given in Equation (5). The similarity between the expression for KB
integrals (Equation (4)) and surface term (Equation (8)) in the thermodynamic limit allows for deriving
an estimation for surface effects as in Equation (6). Using Equation (6), and Equation (8) an explicit
expression for surface effects in the thermodynamic limit, denoted here by F∞

2 , is obtained from

F∞
2 ≈

∫ L

0
[g(r)− 1]

(
−3

2
r
)

u2(r)dr (11)

with u2(r) in Equation (7).

5
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An alternative method to extrapolate KB integrals GV to the thermodynamic limit is to use the
scaling of LGV with L, rather than the scaling of GV with 1/L. The scaling of GV in Equation (2) can
be rewritten as

LGV(L) = G∞L + F∞ (12)

By fitting the linear part of the scaling of LGV with L, it is possible to obtain G∞ and F∞.
Finding the slope and intercepts of a straight line is easier than extrapolating the linear regime
of the scaling of GV with 1/L. Another advantage of this approach is that an estimation of the surface
effects is automatically computed. This estimation can be compared to other available methods for
computing F∞. So far, it is shown that three methods are available for estimating G∞ from integrals of
finite subvolumes:

1. Using the scaling of GV (Equation (4)) with 1/L. To estimate G∞, the linear regime of the scaling
is extrapolated to the limit 1/L → 0.

2. Using the direct extrapolation formula G2 (Equation (6)) combined with the function u2(r)
(Equation (7)). This will converge to G∞ for large L.

3. Computing G∞ from fitting the linear regime of the scaling of LGV with L (Equation (12)).
The values of the integrals GV are computed using Equation (4).

To simplify the estimation of KB integrals, it would be useful to evaluate the performance of these
methods in terms of accuracy and practicality. Similarly, different methods are available to compute
the surface term in the thermodynamic limit F∞:

1. Using the expression in Equation (11).
2. From the scaling of LFV with L (Equation (9)). FV is computed using Equation (10). The value of

F∞ is obtained from the slope of the scaling; as LFV(L) = F∞L + C, in which C is a constant.
3. From the scaling of LGV with L (Equation (9)). The value of F∞ is obtained from the intercept of

the scaling.

The objective of this work is to test the estimation of KB integrals G∞ and the surface effects F∞

using the approaches discussed earlier. For both G∞ and F∞, the effect of the size of the system is
studied. These effects are investigated for both Lennard–Jones (LJ) and Weeks–Chandler–Andersen
(WCA) fluids [21] at different densities. Finally, this work aims at quantifying the contributions of the
surface term when computing KB integrals of LJ fluid at various densities.

This paper is organized as follows: In Section 2, the methods used to compute RDFs, KB integrals,
and the surface term of KB integrals of LJ and WCA fluids are presented. Section 2 includes the details
of the MD simulations. In Section 3, the results are presented, which include KB integrals and the
surface term for WCA and LJ systems at different sizes and densities. Section 4 summarises the main
findings of this work.

2. Methods

RDFs of systems of particles interacting via the LJ potential are computed using MD simulations
in the NVT ensemble. Systems with different densities and number of particles are studied. Also,
systems of particles interacting via the Weeks–Chandler–Andersen (WCA) potential [22], where only
the repulsive part of the LJ potential is included, are considered. The common approach of particles
counting was implemented to compute RDFs. While this is not carried out in this work, it is possible to
investigate other methods. It would be interesting to see if force-based computations of RDFs improve
the convergence of computed KB integrals [23–25]. For each system, the computed RDF is used to
compute KB integrals G∞ and the surface term F∞ in the thermodynamic limit. For both quantities,
the methods discussed in Section 1 are used. In this section, the numerical details of computing RDFs
and the required integrals are briefly discussed.

6
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According to Kirkwood–Buff theory, KB integrals are defined for open and infinite systems [6].
When computing KB integrals using molecular simulations of closed systems, it is essential to correct
RDFs for finite-size effects [10,12,15]. Recently, a number of corrections for the RDFs have been
proposed [12,26,27]. In Reference [15] it was demonstrated that the accuracy of computing KB integrals
improves when the Ganguly and van der Vegt correction [26] is applied. Applying the Ganguly
and van der Vegt correction results in RDFs that are consistent with the physical behavior of fluids.
For example, Equation (13) converges to g(r) = 1 for a single-component ideal gas, which is the correct
value in the thermodynamic limit. The Ganguly and van der Vegt [26] correction is based on the excess
(or depletion) of the density of the system beyond a distance L from a central molecule α. The corrected
RDF is

gvdV
αβ (r) = gαβ(r)

Nβ

(
1 − V

Vbox

)
Nβ

(
1 − V

Vbox

)
− ΔNαβ(r)− δαβ

(13)

gαβ(r) is obtained from a simulation in a finite system with total volume Vbox. ΔNαβ(r) is the excess
number of particles of type β in a sphere of radius r around a particle of type α, which is computed by

ΔNαβ(r) =
∫ r

0
dr′4πr′2ρβ

[
gαβ(r′)− 1

]
(14)

For all systems studied in this work, RDFs are corrected using the Ganguly and van der Vegt
corrections. The corrected RDFs are numerically integrated to obtain GV , G2, FV , and F∞

2 . Once these
quantities are obtained, various methods are implemented to estimate KB integrals G∞ and the surface
terms F∞ in the thermodynamic limit. Table 1 provides the relations and description of the methods
considered to estimate G∞. Similarly, Table 2 presents information regarding the methods used to
estimate F∞.

Table 1. A brief description of the methods used in this work to estimate Kirkwood–Buff (KB)
integrals in the thermodynamic limit G∞ using radial distribution functions (RDFs) computed from
finite systems.

Method Equations Description

1. Scaling of GV with 1/L (4) and (5) G∞ is obtained from extrapolating the linear regime of the scaling
to 1/L → 0.

2. Direct estimation G2 (6) and (7) A plateau in G2 is identified when plotted as a function of L.
To estimate G∞, values of G2 in this plateau are averaged.

3. Scaling of LGV with L (4) and (12) To find G∞, the slope of the linear part of the scaling is computed.

Table 2. A brief description of the methods used in this work to estimate the surface term in the
thermodynamic limit F∞ using RDFs computed from finite systems.

Method Equations Description

1. Direct estimation F∞
2 (11) A plateau in F∞

2 is identified when plotted as a function of L.
To estimate F∞, values of F∞

2 in this plateau are averaged.

2. Scaling of LFV with 1/L (9) and (10) To find F∞, the slope of the linear part of the scaling is computed.

3. Scaling of LGV with 1/L (4) and (12) To find F∞, the intercept of the linear part of the scaling
is computed.

Simulation Details

RDFs of LJ and WCA fluids were computed using MD simulations and then used to estimate KB
integrals and surface effects. The simulations were carried out using an in-house FORTRAN code.
All RDFs were computed from simulations in the NVT ensemble. The systems were simulated at a
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dimensionless temperature T = 2, dimensionless densities ρ ranging from 0.2 to 0.8 and using number
of particles N equals to 100, 500, 1000, 5000, 10,000, 30,000, and 50,000. For each size, the length of the
simulation box L was set according to the required density.

All MD simulations started from a randomly generated configuration for which an energy
minimization was used to eliminate particle overlaps. A sufficient number of time steps was used
to initialize the system. After initialization, RDFs were sampled every 100 time steps. For both
initialization and production, a dimensionless time step equal to 0.001 was used. The simulation
length was chosen depending on the size of the system and the available computational resources.
For instance, for systems with N = 100, 1 × 109 production time steps were carried out, while for
the maximum size N = 50,000, 7 × 105 steps were used. Multiple independent simulations were
performed for each point (ρ, N). The resulting RDFs were then averaged and used to compute G∞

and F∞. At high densities (ρ > 0.4), RDFs from at least 10 runs are used. At lower densities, at least
20 runs are performed to enhance statistics.

3. Results

3.1. Estimation of KB Integrals

KB integrals in the thermodynamic limit G∞ are obtained using the three different approaches
discussed earlier. To compare the estimation methods, WCA systems were studied while fixing
temperature and density. These parameters define the thermodynamic state of the system. Values of
KB integrals, computed using different methods, for other densities for LJ and WCA fluids are provided
in the Supporting Information (SI). After comparing estimation methods of KB integrals, the relation
between density of the system and KB integrals for LJ and WCA system is discussd.

Figure 1 shows RDFs for systems of different sizes of a WCA fluid at T = 2 and ρ = 0.6
(dimensionless units). Figure 1b shows that using small system sizes, specifically N = 100 and
N = 500, results in RDFs with higher oscillations than large systems, where N equals to or larger than
1000. As will be shown later, this causes implications in the computation of G∞. In Figure 2, the scaling
of KB integrals of finite subvolumes GV with 1/L is presented. For large systems, where N > 500,
a linear range is identified which can be extrapolated to the limit 1/L → 0. Instead of computing GV ,
KB integrals G∞ can be directly estimated from RDFs using Equations (6) and (7). Figure 3 shows
the estimation of G2 for systems with varying sizes. When plotted as a function of L, the values of
the integrals G2 show a plateau at a constant value which corresponds to G∞. However, Figure 3b
shows that this is not true for all system sizes. In fact, the values of G∞ can be accurately estimated
for systems with a minimum number of particles of 5000, which is larger than the minimum size
required in the previous extrapolation method (Figure 2). The third method to find G∞ is to use the
scaling of LGV with L (Equation (2)). Figure 4 shows that plotting the integrals of finite subvolumes
as LGV vs. L results in a clear linear regime that is easily identified. The value of the slope of the
fitted line corresponds to the value of G∞. For this method, systems with number of particles equal
to or larger than 500 can already be used to compute G∞. In principle, all methods for estimating
G∞ should result in the same answer in the thermodynamic limit. In Table 3, values of KB integrals
G∞ obtained using the three methods studied in this work are listed. For KB integrals reported in
Table 3, only uncertainties greater than 0.01% are shown. The values are obtained from systems with
various sizes. For each size, a linear range was used to compute G∞. In Reference [15], guidelines were
provided for selecting a range for the extrapolation of GV vs. 1/L. Essentially, the first few molecular
diameters after r = 0, and distances beyond L/2 should be avoided. Fitting lines of the scaling of LGV

vs. L is more convenient. In general, fitting regions are chosen such that the coefficient of determination
R2 is equal to or very close to 1. The values of G∞ in Table 3 show that the three methods provide very
similar estimations with statistical uncertainties below 0.1%. Moreover, results in Table 3 show that
computing G∞ using the direct estimation G2 require larger systems compared to the other methods.
This was found to be true for other densities as well as for systems with LJ particles (see the SI).
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From studying other systems, it was found that the scaling of LGV with L is found to be the easiest
method to apply.

(a)

(b)

Figure 1. (a) RDFs for systems of different sizes of a Weeks–Chandler–Andersen (WCA) fluid at T = 2
and ρ = 0.6 (dimensionless units). Molecular dynamics (MD) simulations in the NVT ensemble were
used to compute g(r), and the Ganguly and van der Vegt correction [26] was applied (Equation (13)).
(b) A zoom in of the plots in Figure (a) is shown.

Table 3. KB integrals in the thermodynamic limit G∞ for a WCA system at T = 2 and ρ = 0.6
(dimensionless units). Values of G∞ are computed from systems with various number of particles N
and using the different methods listed in Table 1.

N Scaling of GV with 1/L Direct Estimation G2 Scaling of LGV with L

500 −1.5063 ± 0.0003 n/a −1.5057 ± 0.0008
1000 −1.5027 ± 0.0000 n/a −1.5028 ± 0.0002
5000 −1.5012 ± 0.0000 −1.5017 ± 0.0004 −1.5013 ± 0.0002

10,000 −1.5012 ± 0.0000 −1.5015 ± 0.0004 −1.5012 ± 0.0001
30,000 −1.5004 ± 0.0001 −1.5007 ± 0.0007 −1.5003 ± 0.0006
50,000 −1.4999 ± 0.0001 −1.5002 ± 0.0009 −1.500 ± 0.001
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Figure 2. KB integrals of finite spherical subvolumes GV (Equation (4)) vs. 1/L (L is the diameter) for
the WCA fluid at T = 2 and ρ = 0.6 (dimensionless units). The values of GV are computed for systems
with varying number of molecules N. The used RDFs are provided in Figure 1.

(a)

(b)

Figure 3. (a) Estimation of KB integrals in the thermodynamic limit, G2 (Equations (6) and (7)) vs. L for
the WCA fluid at T = 2 and ρ = 0.6 (dimensionless units). The values of G2 are computed for systems
with varying number of molecules N. The used RDFs are provided in Figure 1. (b) A zoom in of the
plots in Figure (a) is shown.
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Figure 4. KB integrals of finite subvolumes multiplied by L, LGV (Equation (4)) vs. L for a WCA fluid
at T = 2 and ρ = 0.6 (dimensionless units). The values of GV are computed for systems with varying
number of molecules N. The used RDFs are provided in Figure 1.

The differences between the estimation methods can be further demonstrated by using a system
of LJ particles at ρ = 0.4, which is more difficult to sample compared to the previously studied system.
In Figure 5, RDFs of systems of varying sizes of a LJ fluid at ρ = 0.4 and T = 2 are shown. In Table 4,
KB integrals G∞ computed using the RDFs in Figure 5 are provided. The scaling of GV with 1/L
is shown in Figure 6. For this method, a linear range is not obtained for all system sizes. Systems
with at least N = 1000 particles can be used to extrapolate to the thermodynamic limit. In Figure 7,
KB integrals G2 are plotted as a function of the size of the subvolume L. The figure shows that even
larger systems are needed to find a reasonable estimate of G∞ using G2. Figure 7b shows that a plateau
is only achieved for large systems where N equals to or larger than 5000. For this system (LJ fluid
at ρ = 0.4), it is possible to use the scaling of LGV with L to compute KB integrals from small sizes.
Figure 8 demonstrates that straight lines that are easily fitted are achieved when using the scaling of
LGV with L, even for sizes where an estimation can not be made with the other two methods.

Table 4. KB integrals in the thermodynamic limit G∞ for a LJ system at T = 2 and ρ = 0.4
(dimensionless units). Values of G∞ are computed from systems with various number of particles N
and using the different methods listed in Table 1.

N Scaling of GV with 1/L Direct Estimation G2 Scaling of LGV with L

500 n/a n/a −1.1593 ± 0.0001
1000 −1.1395 ± 0.0001 n/a −1.1390 ± 0.0008
5000 −1.1161 ± 0.0006 −1.13 ± 0.02 −1.114 ± 0.004

10,000 −1.1156 ± 0.0005 −1.13 ± 0.02 −1.114 ± 0.004
30,000 −1.1064 ± 0.0009 −1.12 ± 0.02 −1.10 ± 0.01
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(a)

(b)

Figure 5. (a) RDFs for systems of different sizes of a LJ fluid at T = 2 and ρ = 0.4 (dimensionless units).
MD simulations in the NVT ensemble were used to compute g(r), and the Ganguly and van der Vegt
correction [26] was applied (Equation (13)). (b) A zoom in of the plots in Figure (a) is shown.

Figure 6. KB integrals of finite spherical subvolumes GV (Equation (4)) vs. 1/L (L is the diameter) for
the LJ fluid at T = 2 and ρ = 0.4 (dimensionless units). The values of GV are computed for systems
with varying number of molecules N. The used RDFs are provided in Figure 5.
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(a)

(b)

Figure 7. (a) Estimation of KB integrals in the thermodynamic limit, G2 (Equations (6) and (7)) vs. L
for the LJ fluid at T = 2 and ρ = 0.4 (dimensionless units). The values of G2 are computed for systems
with varying number of molecules N. The used RDFs are provided in Figure 5. (b) A zoom in of the
plots in Figure (a) is shown.

Figure 8. KB integrals of finite subvolumes multiplied by L, LGV (Equation (4)) vs. L for a LJ fluid at
T = 2 and ρ = 0.4 (dimensionless units). The values of GV are computed for systems with varying
number of molecules N. The used RDFs are provided in Figure 5.
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Effect of System Size and Density

Figure 9a shows the effect of the size of the system on the values of G∞ computed using the
scaling of LGV with L. The obtained values of G∞ are practically constant. For the LJ fluid, a weak
decrease, roughly linear in N−1/3, is observed. Figure 9a, Tables 3 and 4 demonstrate that statistical
uncertainties are small for systems with intermediate sizes (N = 5000 and N = 10,000). Smaller systems
do not provide a sufficient linear regime and very large systems require longer sampling. In Figure 9b,
KB integrals at different densities are shown for the LJ and WCA fluids. To estimate G∞, the scaling of
LGV with L was used. MD simulations were performed to study systems with dimensionless densities
ranging from 0.1 to 0.8.

(a)

(b)

Figure 9. (a) KB integrals in the thermodynamic limit G∞ as a function of the size of the system for the
WCA fluid at ρ = 0.6, and the LJ fluid at ρ = 0.4. Both fluids are simulated at T = 2 (dimensionless
units). (b) G∞ as a function of dimensionless density ρ of LJ and WCA systems at T = 2. For all
densities, the same number of particles is used, N = 10,000.

The behaviour of KB integrals in the limit ρ → 0 can be checked by using the fact that in this limit,
the RDF is known analytically, g(r) = exp[−βu(r)], where u(r) is the pair potential [28]. Figure 9b
shows that for both interaction potentials, the values of G∞ computed using molecular simulation
approach the correct value in the low density limit. In the high density limit, the differences between
G∞ of LJ and WCA fluids seem to disappear. At high densities, the repulsive part of the interaction
potential, which is the same for WCA and LJ, becomes more important. Hence, the two fluids are
expected to behave in the same way as the density increases. This is shown in Figure 9b.

14



Nanomaterials 2020, 10, 771

3.2. Estimation of Surface Effects

An important objective of this work is to investigate surface effects of finite systems used to
compute KB integrals. As mentioned earlier, there are three possible approaches to compute the surface
term in the thermodynamic limit F∞. Similar to the estimation of G∞, the surface term of the WCA
fluid is computed from systems with varying number of particles N at the same thermodynamic state.

In Figure 10, estimations of the surface term in the thermodynamic limit F∞
2 (Equation (11)) are

presented as a function of L. Unlike the values of G∞
2 , a plateau where the values can be averaged is

not easily identified. Alternatively, it is possible to consider the scaling of the values of the surface
term of finite subvolumes FV (Equation (10)). Figure 11 shows the scaling of LFV with L for the
same WCA fluid. As in the case of the scaling of LGV , a linear regime to be fitted is easily identified.
The slope corresponds to the value of F∞. Additionally, the value of F∞ can be estimated from the
intercept with the vertical axis of the line formed from the scaling of LGV with L. The latter two
approaches require smaller system sizes than the direct estimation F∞

2 . For instance, Figure 11 shows
that systems with as few as N = 1000 provide a clear linear range that can be used to estimate F∞.
It is of interest to investigate whether the different available methods to find F∞ result in matching
estimations. The values of F∞ computed using the three methods considered in this work are listed in
Table 5. Results are shown for systems with varying number of particles. While acceptable statistics
are achieved for most methods and system sizes, the values of F∞ from the three different methods
agree less well than the corresponding values of G∞. This can be attributed to the larger statistical
errors obtained when compared to estimating G∞.

Table 5. Surface term in the thermodynamic limit F∞ for a WCA system at T = 2 and ρ = 0.6
(dimensionless units). Values of F∞ are computed from systems with various number of particles N
and using the different methods listed in Table 2.

N Direct Estimation F∞
2 Scaling of LGV with L Scaling of LFV with L

500 n/a 0.8168 ± 0.0008 n/a
1000 n/a 0.8082 ± 0.0002 0.804 ± 0.004
5000 0.801 ± 0.002 0.8036 ± 0.0002 0.8004 ± 0.0002

10,000 0.8013 ± 0.0004 0.8034 ± 0.0001 0.8013 ± 0.0003
30,000 0.795 ± 0.005 0.7979 ± 0.0006 0.79 ± 0.01
50,000 0.79 ± 0.01 0.793 ± 0.001 0.78 ± 0.02

As in the case of computing G∞, using scaling of LGV provides estimations of the surface term
using systems smaller than those required by the other methods. This effect is more significant when
looking at a system of LJ particles at a relatively low density. Table 6 provides the values of F∞ for a LJ
fluid at ρ = 0.4, computed using the methods studied in this work. In Figures 12 and 13 the scaling of
F∞

2 with L as well as the scaling of LFV with L are shown. These plots illustrate that linear regions
are not easily identified to compute F∞, in contrast to the higher density case with ρ = 0.6 (Figures 10
and 11). As a result, when computing surface effects, the scaling of LGV with L is recommended.

Table 6. Surface term in the thermodynamic limit F∞ for a LJ system at T = 2 and ρ = 0.4
(dimensionless units). Values of F∞ are computed from systems with various number of particles N
and using the different methods listed in Table 2.

N Direct Estimation F∞
2 Scaling of LGV with L Scaling of LFV with L

500 n/a −0.2483 ± 0.0001 n/a
1000 n/a −0.3320 ± 0.0008 n/a
5000 −0.53 ± 0.04 −0.460 ± 0.004 −0.5718 ± 0.0001

10,000 −0.52 ± 0.03 −0.464 ± 0.004 −0.5433 ± 0.0004
30,000 −0.60 ± 0.06 −0.543 ± 0.008 −0.6315 ± 0.0009
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Figure 10. Estimation of the surface term in the thermodynamic limit F∞
2 (Equation (11)) vs. L for the

WCA fluid at T = 2 and ρ = 0.6 (dimensionless units). The values of F∞
2 are computed for systems

with varying number of molecules N. The used RDFs are provided in Figure 1.

Figure 11. Surface effects of finite subvolumes multiplied by the diameter of the subvolume LFv

(Equation (10)) vs. L for the WCA fluid at T = 2 and ρ = 0.6 (dimensionless units). The values of
Gv are computed for systems with varying number of molecules N. The used RDFs are provided in
Figure 1.

Figure 12. Estimation of the surface term in the thermodynamic limit F∞
2 (Equation (11)) vs. L for the

LJ fluid at T = 2 and ρ = 0.4 (dimensionless units). The values of F∞
2 are computed for systems with

varying number of molecules N. The used RDFs are provided in Figure 5.
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Figure 13. Surface effects of finite subvolumes multiplied by the diameter of the subvolume LFV

(Equation (10)) vs. L for the LJ fluid at T = 2 and ρ = 0.4 (dimensionless units). The values of GV are
computed for systems with varying number of molecules N. The used RDFs are provided in Figure 5.

Effect of System Size and Density

Figure 14a shows the dependence of F∞ with inverse system size. Specifically, F∞ decreases as
(1/N)1/3. This is observed for surface terms computed using the scaling of LFV with L as well as
values computed using the scaling of LGV with L. In Figure 14a, the error bars of the values of F∞

vary with N in a similar manner as the values of G∞. Statistical uncertainties of the systems studied in
this work are provided in Tables 5 and 6.

As for KB integrals, the surface terms F∞ can be determined accurately as a function of the
density. Figure 14b shows the values of F∞ with density for LJ and WCA fluids. The surface term
is estimated for the range ρ = 0.1 − 0.8. At ρ → 0, F∞ is computed analytically using Equation (10)
and g(r) = exp[−βu(r)]. In the low density limit, the surface terms computed in this work approach
the theoretical value. In the high density limit, differences between surface term of LJ and WCA
disappear due to dominating repulsive interactions, which are the same for the LJ and WCA potentials.
From Figures 9b and 14b, a comparison between the values of G∞ and F∞ can be made. Both values
change in the same manner with the density of the system. For all densities, surface terms F∞ seem to
have the same order of magnitude as KB integrals G∞. This indicates the significant contribution of
surface effects of finite systems used to compute KB integrals in the thermodynamic limit. The last
observation applies to a LJ fluid as well as a WCA fluid.
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(a)

(b)

Figure 14. (a) Surface term in the thermodynamic limit F∞ as a function of the size of the system for
the WCA fluid at ρ = 0.6, and the LJ fluid at ρ = 0.4. Both fluids are simulated at T = 2 (dimensionless
units). (b) F∞ as a function of dimensionless density ρ of LJ and WCA systems at T = 2. For all
densities, the same number of particles is used, N = 10,000.

4. Conclusions

In this work, KB integrals and surface effects in the thermodynamic limit were computed for
systems of LJ and WCA fluids. Using MD simulations, RDFs of the LJ and WCA systems of different
sizes were computed. Different methods were used to estimate KB integrals G∞ from RDFs of finite
systems: scaling of GV with 1/L, direct estimation integrals G2, and the scaling of LGV with L.
The three methods were found to provide reliable estimates of G∞. Differences between the three
methods mainly arise from the size of the system required to obtain an accurate estimation. The scaling
of LGV with L was found to require smaller systems when compared to other methods. Moreover,
the scaling of LGV was found the easiest to implement for estimating KB integrals and it provides
a suitable estimate of surface effects. Estimating the surface term in the thermodynamic limit F∞

is possible from: the finite integral F∞
2 , the scaling of LFV with L, as well as the scaling of LGV

with L. For all methods, the surface term F∞ was found to decrease with increasing system size.
The magnitude of the values of F∞ were found to be the same as the magnitude of the KB integrals G∞.
Both quantities were found to change in the same manner with the density of the system. KB integrals
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and surface terms were computed for LJ and WCA fluids at different densities. The differences between
KB integrals of the two systems, LJ and WCA, vanish for high densities as the structure is dominated
by repulsive interactions.

Supplementary Materials: The following are available at http://www.mdpi.com/2079-4991/10/4/771/s1,
Tables S1–S16: KB integrals G∞ and the surface term F∞ in the thermodynamic limit are provided at different
densities for the LJ and WCA fluids. For each interaction potential, G∞ and F∞ are computed at a dimensionless
temperature T = 2 and the following dimensionless densities: ρ = 0.2, ρ = 0.4, ρ = 0.6, and ρ = 0.8.

Author Contributions: Conceptualization, P.K., J.-M.S. and T.J.H.V.; investigation, all authors; methodology, P.K.,
J.-M.S., T.J.H.V. and S.K.S.; supervision: P.K., J.-M.S., O.A.M., T.J.H.V., S.K.S. and I.G.E.; writing–review and
editing: all authors; writing–original draft preparation: N.D. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was sponsored by NWO Exacte Wetenschappen (Physical Sciences) for the use of
supercomputer facilities with financial support from the Nederlandse Organisatie voor weten schappelijk
Onderzoek (Netherlands Organization for Scientific research, NWO). TJHV acknowledges NWO-CW for a
VICI grant. PK acknowledges funding by JSPS KAKENHI Grant Number 19K05383.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Patterson, D. Effects of molecular size and shape in solution thermodynamics. Pure Appl. Chem. 1976,
47, 305–314. [CrossRef]

2. Koga, Y. Solution Thermodynamics and Its Application to Aqueous Solutions: A Differential Approach, 2nd ed.;
Elsevier: Amsterdam, The Netherlands, 2017.

3. Lee, L.L. Molecular Thermodynamics of Non-Ideal Fluids; Butterworth-Heinemann: Oxford, UK, 2016.
4. Panagiotopoulos, A.Z. Molecular simulation of phase equilibria: Simple, ionic and polymeric fluids.

Fluid Phase Equilib. 1992, 76, 97–112. [CrossRef]
5. Schnell, S.K.; Skorpa, R.; Bedeaux, D.; Kjelstrup, S.; Vlugt, T.J.H.; Simon, J.M. Partial molar enthalpies and

reaction enthalpies from equilibrium molecular dynamics simulation. J. Chem. Phys. 2014, 141, 144501.
[CrossRef]

6. Kirkwood, J.G.; Buff, F.P. The Statistical Mechanical Theory of Solutions. I. J. Chem. Phys. 1951, 19, 774–777.
[CrossRef]

7. Ben-Naim, A. Molecular Theory of Solutions; Oxford University Press: Oxford, UK, 2006.
8. Hall, D.G. Kirkwood–Buff theory of solutions. An alternative derivation of part of it and some applications.

Trans. Faraday Soc. 1971, 67, 2516–2524. [CrossRef]
9. Newman, K.E. Kirkwood–Buff solution theory: Derivation and applications. Chem. Soc. Rev. 1994, 23, 31–40.

[CrossRef]
10. Dawass, N.; Krüger, P.; Schnell, S.K.; Simon, J.M.; Vlugt, T.J.H. Kirkwood-Buff integrals from molecular

simulation. Fluid Phase Equilib. 2019, 486, 21–36. [CrossRef]
11. Schnell, S.K.; Liu, X.; Simon, J.M.; Bardow, A.; Bedeaux, D.; Vlugt, T.J.H.; Kjelstrup, S. Calculating

thermodynamic properties from fluctuations at small scales. J. Phys. Chem. B 2011, 115, 10911–10918.
[CrossRef]

12. Krüger, P.; Schnell, S.K.; Bedeaux, D.; Kjelstrup, S.; Vlugt, T.J.H.; Simon, J.M. Kirkwood–Buff Integrals for
Finite Volumes. J. Phys. Chem. Lett. 2013, 4, 235–238. [CrossRef]

13. Hill, T.L. Thermodynamics of Small Systems. J. Chem. Phys. 1962, 36, 3182–3197. [CrossRef]
14. Hill, T.L. Thermodynamics of Small Systems; Dover: New York, NY, USA, 1994.
15. Dawass, N.; Krüger, P.; Schnell, S.K.; Bedeaux, D.; Kjelstrup, S.; Simon, J.M.; Vlugt, T.J.H. Finite-size effects

of Kirkwood–Buff integrals from molecular simulations. Mol. Simu. 2018, 44, 599–612. [CrossRef]
16. Krüger, P.; Vlugt, T.J.H. Size and shape dependence of finite–volume Kirkwood-Buff integrals. Phys. Rev. E

2018, 97, 051301. [CrossRef] [PubMed]
17. Strøm, B.A.; Simon, J.M.; Schnell, S.K.; Kjelstrup, S.; He, J.; Bedeaux, D. Size and shape effects on the

thermodynamic properties of nanoscale volumes of water. Phys. Chem. Chem. Phys. 2017, 19, 9016–9027.
[CrossRef] [PubMed]

19



Nanomaterials 2020, 10, 771

18. Frenkel, D.; Smit, B. Understanding Molecular Simulation: From Algorithms to Applications, 2nd ed.; Academic
Press: London, UK, 2002; Volume 1.

19. Dawass, N.; Krüger, P.; Schnell, S.K.; Simon, J.M.; Vlugt, T.J.H. Kirkwood–Buff integrals of finite systems:
Shape effects. Mol. Phys. 2018, 116, 1573–1580. [CrossRef]

20. Santos, A. Finite-size estimates of Kirkwood-Buff and similar integrals. Phys. Rev. E 2018, 98, 063302.
[CrossRef]

21. Lennard-Jones, J.E. On the determination of molecular fields. II. From the equation of state of gas. Proc. R.
Soc. A 1924, 106, 463–477.

22. Weeks, J.D.; Chandler, D.; Andersen, H.C. Role of Repulsive Forces in Determining the Equilibrium Structure
of Simple Liquids. J. Chem. Phys. 1971, 54, 5237–5247. [CrossRef]

23. Borgis, D.; Assaraf, R.; Rotenberg, B.; Vuilleumier, R. Computation of pair distribution functions and
three-dimensional densities with a reduced variance principle. Mol. Phys. 2013, 111, 3486–3492. [CrossRef]

24. De las Heras, D.; Schmidt, M. Better than counting: Density profiles from force sampling. Phys. Rev. Lett.
2018, 120, 218001. [CrossRef]

25. Jamali, S. Transport Properties of Fluids: Methodology and Force Field Improvement Using Molecular
Dynamics Simulations. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2020.

26. Ganguly, P.; van der Vegt, N.F.A. Convergence of Sampling Kirkwood-Buff Integrals of Aqueous Solutions
with Molecular Dynamics Simulations. J. Chem. Theory Comput. 2013, 9, 1347–1355. [CrossRef]

27. Cortes-Huerto, R.; Kremer, K.; Potestio, R. Communication: Kirkwood-Buff integrals in the thermodynamic
limit from small-sized molecular dynamics simulations. J. Chem. Phys. 2016, 145, 141103. [CrossRef]

28. Hansen, J.P.; McDonald, I.R. Theory of Simple Liquids; Elsevier: Amsterdam, The Netherlands, 1990.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

20



nanomaterials

Article

Characterizing Polymer Hydration Shell
Compressibilities with the Small-System Method

Madhusmita Tripathy †, Swaminath Bharadwaj †, Shadrack Jabes B. † and

Nico F. A. van der Vegt *

Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt,
64287 Darmstadt, Germany; tripathy@cpc.tu-darmstadt.de (M.T.); bharadwaj@cpc.tu-darmstadt.de (S.B.);
barnabas@cpc.tu-darmstadt.de (S.J.B.)
* Correspondence: vandervegt@cpc.tu-darmstadt.de
† These authors contributed equally to this work.

Received: 24 June 2020; Accepted: 22 July 2020; Published: 25 July 2020

Abstract: The small-system method (SSM) exploits the unique feature of finite-sized open systems,
whose thermodynamic quantities scale with the inverse system size. This scaling enables the
calculation of properties in the thermodynamic limit of macroscopic systems based on computer
simulations of finite-sized systems. We herein extend the SSM to characterize the hydration shell
compressibility of a generic hydrophobic polymer in water. By systematically increasing the
strength of polymer-water repulsion, we find that the excess inverse thermodynamic correction
factor (Δ1/Γ∞

s ) and compressibility (Δχs) of the first hydration shell change sign from negative to
positive. This occurs with a concurrent decrease in water hydrogen bonding and local tetrahedral
order of the hydration shell water. The crossover lengthscale corresponds to an effective polymer bead
diameter of 0.7 nm and is consistent with previous works on hydration of small and large hydrophobic
solutes. The crossover lengthscale in polymer hydration shell compressibility, herein identified with
the SSM approach, relates to hydrophobic interactions and macromolecular conformational equilibria
in aqueous solution. The SSM approach may further be applied to study thermodynamic properties
of polymer solvation shells in mixed solvents.

Keywords: small system method; thermodynamics of small systems; hydration shell
thermodynamics; finite size correction

1. Introduction

Although the laws of statistical mechanics are customarily used in computer simulations to relate
thermodynamical properties of a broad range of systems to interactions between their constituent
components, there remains a caveat: computer simulations are performed on finite-sized systems
in which the thermodynamic properties may deviate from the corresponding properties in the
thermodynamic limit (TL) of large systems [1,2]. An example is the incorrect asymptotic behavior
of the radial distribution function (RDF), g(r), obtained by computer simulation of a closed system
with a finite number of particles. Routes for calculating thermodynamic properties from integrals
that involve the RDF are sensitive to subtle changes in the asymptotic tail behavior of the RDF and,
therefore, show size dependencies in practical calculations. This issue is well known [3–5] and has
received renewed attention in recent years, in particular, in applications of the Kirkwood-Buff theory
of solutions and the calculation of Kirkwood-Buff integrals (KBI) [4–9].

The small-system method (SSM) by Schnell et al. [10,11] provides another route for computing
thermodynamic properties in the TL from small scale fluctuations. This method uses a small-system
scaling relation, derived based on the thermodynamics of small systems by Hill [12,13], to obtain
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thermodynamic properties corresponding to the TL. For example, the scaling relation for the
thermodynamic correction factor, Γ, of a single-component small system is given by [10]

1/Γ(L) = 1/Γ∞ +
c
L

(1)

where L is the linear dimension of a small system with volume V = L3, c is a constant that does not
depend on L, and Γ∞ is the thermodynamic correction factor in the TL where V → ∞, 〈N〉 → ∞,
and the particle number density ρ = 〈N〉/V is constant. Γ∞ is related to the isothermal compressibility
(χT) according to

1/Γ∞ = ρkBTχT . (2)

The inverse thermodynamic correction factor in Equation (1) follows from density fluctuations in
the grand-canonical ensemble

1/Γ(L) =
〈N2〉 − 〈N〉2

〈N〉 , (3)

where N is the number of particles and 〈·〉 indicates ensemble averages. In practice, 1/Γ(L) is
calculated for small open systems of varying linear dimension L embedded in a large particle
reservoir (closed simulation box of volume Vb >> L3). The scaling relation (Equation (1)) is then
observed for small-system sizes that obey V1/3

b > L > ξ (where ξ is the correlation length). The SSM
has been successfully applied to pure component systems as well as binary and multicomponent
systems [5,11,14–16]. Very recently, the method has been further employed to study the thermodynamic
properties of confined fluids in nanopores [17,18]. In a spirit similar to the SSM, Jamali et al. [19]
exploited the scaling of the elements of the diffusivity matrix, which depends on Γ, with system size to
estimate their TL value for ternary molecular and model mixtures.

Recently, Trinh et al. [20,21] have extended the SSM to study the thermodynamic properties of
adsorbed CO2 and CH4 layers on graphite and activated carbon surfaces. Motivated by these studies,
we herein extend the SSM to investigate the compressibility of polymer hydration shells. The TL
(1/L → 0) of an extended hydration shell will be considered for a fully stretched linear chain with L
defined along the direction of the chain. The hydration shell compressibility of hydrophobic polymers
relates to hydrophobic interactions and pressure dependencies of polymer (coil-to-globule) collapse
equibria in water. We are, in particular, interested in the role of a crossover length scale in hydrophobic
hydration of macromolecules. While hydration thermodynamics of small hydrophobic solutes is
governed by density fluctuations in pure water, hydration of large hydrophobic solutes is governed
by the (de)wetting of their surfaces [22,23]. The crossover length scale, above which a macroscopic
thermodynamic description applies, has been investigated based on computer simulations that studied
the hydration thermodynamics of small and large hydrophobic solutes [23–26]. Susceptibilities of
extended hydration shells to external perturbations have been characterized more recently [27,28]
and further demonstrates the role of dewetting of hydrophobic surfaces in the thermodynamics of
biomolecular interactions such as protein-protein and ligand-protein interactions.

We will herein ask if a small-to-large crossover can be observed in the polymer hydration shell
compressibility by systematically increasing the range of the repulsive interaction between beads
of a generic polymer and water. Our results demonstrate that Δ1/Γ∞

s and Δχs, i.e., the inverse
thermodynamic correction factor and the compressibility of the first hydration shell in excess to
the corresponding properties of a shell of exactly the same radial and lateral dimensions in pure
water, exhibit a crossover from negative to positive values at intermediate strengths of the polymer
bead-water repulsion. The observed crossover corresponds to an effective polymer bead Lennard-Jones
diameter of approximately 0.7 nm. This crossover length scale in hydrophobic hydration agrees with
earlier work on hydrophobic hydration of spherical solutes in which a relation to the Egelstaff–Widom
lengthscale, i.e., the product of the surface tension and compressibility, of water was demonstrated [29].
In the present work, we observe this small-to-large crossover for all lateral dimensions L of the small
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system (first hydration shell). However, Δ1/Γs(L) is independent of L for effective polymer bead
sizes below 0.7 nm, while it increases with L for hydrophobic polymers with larger effective bead
sizes. This indicates that only for effective polymer bead sizes larger than 0.7 nm, the overall exposed
hydrophobic polymer surface area impacts the excess thermodynamic properties of hydrophobic
polymer hydration shells and causes a dependence of these properties on the linear polymer dimension
whose limiting values can be determined with the small system method.

The remainder of this paper is structured as follows. In Section 2, we discuss the details of
the simulations. In Section 3, we discuss the methodology used to estimate the compressibility of
individual hydration shells and the results we obtain. We comment on the scope and limitations of the
SSM approach in Section 4 and conclude in Section 5 with our main results and future directions.

2. Methods

In this work, a generic hydrophobic polymer model, developed by Zangi et al.[30], was used to
simulate aqueous polymer systems at various strengths of the polymer-water repulsive interaction. The
polymer chain consisted of 40 uncharged Lennard-Jones (LJ) beads (σp = 0.4 nm and εp = 1.0 kJ mol−1)
connected via rigid bonds of length of 0.153 nm. The simulation system was composed of the 40-mer
chain, which was periodically replicated in the Z-direction to obtain an infinitely long polymer
chain [31], along with 5000 TIP4P/2005 water [32] molecules. The box size along the Z-direction,
lz, was equal to the end-to-end distance Ree of the 40-mer chain, which was fixed at 6.11 nm in all
simulations to ensure a fully stretched polymer conformation. Thus, unlike in the original model [30],
the equilibrium bond angles were kept at 180◦. Additionally, position restraints, involving a harmonic
potential with a force constant of 105 kJ mol−1nm−2, were applied on each polymer bead to keep the
chain conformation fixed.

The MD simulations were performed using the Gromacs 2019.3 [33] package. All bonds were
constrained using the LINCS algorithm [34]. For the van der Waals interaction, a cutoff of 1.4 nm
was used without long range dispersion corrections. Long range electrostatic interactions were
calculated using the particle mesh Ewald method [35] with a real space cutoff of 1.4 nm, a grid
space of 0.12 nm, and an interpolation order of 10−4. The pressure and temperature were fixed at
1 bar and 300 K, respectively. The simulation systems were energy minimized using the steepest
descent method until convergence and subsequently equilibrated in the NVT ensemble for 1 ns
using the velocity-rescale thermostat [36]. This was followed by a 1 ns simulation run under NPT
conditions using the Nośe-Hoover thermostat [37], with τT =1.0 ps, and the Berendsen barostat [38],
with τP = 2.0 ps. In the NPT simulations, the end-to-end distance of the chain (Ree = lz) was kept
constant by applying a semi-isotropic pressure coupling, which allowed box fluctuations only in the X-
and Y-directions. Subsequently, a 2 ns NPT run was performed using the Nośe-Hoover thermostat [37]
(τT = 1.0 ps) and the Parinello–Rahman barostat [39] (τP = 2.0 ps). This NPT run was followed by
5 cycles of NPT (using Nośe-Hoover thermostat and Parinello–Rahman barostat) and NVT (using
Nośe-Hoover thermostat) runs of 1 ns duration each in order to ensure that the pressure in the NVT
simulations fluctuates around 1 bar. The last NVT simulation was extended by 10 ns to generate the
production trajectory, which was used for subsequent analysis. For all simulations, an integration
time-step of 2 fs was used, and the system snapshots were collected every 1 ps.

The polymer-water interaction was modeled using an LJ 12-6 potential with the form,

Upw = α
C12,pw

r12
pw

− C6,pw

r6
pw

, (4)

where C12,pw(= 4εpwσ12
pw) and C6,pw(= 4εpwσ6

pw) are, respectively, the repulsive and attractive
contributions to the potential and α is a scaling factor for the repulsive interaction. The polymer-
water interaction parameters, εpw and σpw, were calculated using Lorenz–Bertholet mixing rules.
The repulsive part of the potential was systematically tuned such that at low repulsion (low α) the
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polymer resembles an infinite string of overlapping small hydrophobic beads while at high repulsion
(high α) it resembles an extended hydrophobic surface. The simulations were performed with α = 1,
2, 4, 6, 8, 10, 12, 15, and 20. As shown in Figure 1, an increase in α led to an increase in the minimal
distance of approach between the polymer and water, and a corresponding decrease in their attractive
interaction strength. It is, therefore, possible to calculate the effective size of the polymer beads (σeff

p )
in terms of the interaction parameters and α:

Upw = α
C12,pw

r12
pw

− C6,pw

r6
pw

=
Ceff

12,pw

r12
pw

−
Ceff

6,pw

r6
pw

,

σeff
pw = α1/6σpw,

σeff
p = 2σeff

pw − σww.

(5)

The inset in Figure 1 shows the change in σeff
p as a function of α. σeff

p increased with increasing α,
approaching a value of 1 nm at α = 40.

Figure 1. The polymer-water interaction potential, Upw, at various repulsive interaction strength, α.
The inset shows the relation between the effective size of the polymer beads, σeff

p , and α.

A pure water system, which was used as the reference for the analysis of hydration shell properties,
consisted of 8000 TIP4P/2005 water molecules in a cubic simulation box. This system was equilibrated
following the same protocol that we used for the aqueous polymer system, using repeated NPT-NVT
equilibration cycles. This was done to ensure that the density of the system in the NPT ensemble
equilibrates and the pressure in the NVT production trajectory fluctuates around 1 bar and well
represents the ambient conditions. Unless and otherwise specified, all reference analyses for hydration
shell properties were performed using this simulation.

As we are interested in the properties of the first few polymer hydration shells, the small systems
were chosen to be cylindrical shells around the linearly extended polymer chain. This way, only the
direct effect of polymer-water interaction is included in the analysis while avoiding any effect of
polymer conformational fluctuations. There have been previous studies where small systems of various
shapes were used to sample thermodynamic properties, which were found to scale identically with the
surface to volume ratio of the small systems [15]. For all these shapes (sphere, cube, and polygons),
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the size of the small system was measured in terms of the diameter or edge length. On the other hand,
a cylindrical shape of the small system involves two length parameters, the radius and the height.
Therefore, to test our current approach involving cylindrical observation volumes, we first used it
to estimate the bulk isothermal compressibility of SPC/E water [40]. The details of the analyses on
bulk SPC/E water and aqueous polymer systems are discussed in the next section along with the
corresponding results.

In addition to Δ1/Γ∞
s and Δχs of the polymer hydration shells, changes in the structural order of

the water molecules in the first hydration shell of the hydrophobic polymer were quantified in terms of
the tetrahedral order parameter qtet. For a central oxygen atom i surrounded by the nearest neighbor
oxygen atoms {j, k}, qtet of the central oxygen was calculated as [41,42]:

qtet,i = 1 − 3
8

3

∑
j=1

4

∑
k=j+1

(cos ψijk + 1/3)2, (6)

where ψijk is the angle between the bond vectors rij and rik. As the water molecules on the outer surface
of the first hydration shell can have hydrogen bond neighbors in the second shell, those instances were
included in the calculations to compute qtet for the first shell as a function of α. For comparison, qtet for
shells in pure water were also computed using the polymer hydration shell widths corresponding to
various α values.

In all cases, the 10 ns long production trajectory was divided into four windows of 2.5 ns each and
the thermodynamic properties were calculated over the windows. The resulting data was averaged to
get the mean values of the quantities along with the corresponding standard error.

3. Results and Discussion

3.1. Isothermal Compressibility of SPC/E Water: Sampling Fluctuations in Cylindrical Observation Volumes

A system of 8000 SPC/E water molecules was simulated (following the protocol discussed above)
at 300 K and 360 K to benchmark the small box method using cylindrical shapes of the subvolumes.
A point close to the center of the simulation box (with box size ∼ 6.23 nm) was identified through
which the reference axis was fixed along the Z-direction. Around this reference axis, particle number
fluctuations were sampled in cylindrical observation volumes using the oxygen centers of the water
molecules (Figure 2a). The radius of the cylinder (rc) was varied between 0.25 nm to 2.5 nm. For a
fixed value of rc, the height of the cylinder (L) was varied in steps of 0.1 nm, starting from L = 0.1 nm
(the smallest subvolume). Here, rc and L together represented a small subvolume. For a given rc,
the observation cylinder was translated along the fixed axis, also in steps of 0.1 nm, for a given value
of L and fluctuations were sampled. This led to improved statistics, especially for the values of L,
which are less than half the box size. For a given rc, 1/Γ(L, rc) was obtained from the observed
particle number fluctuations (Equation (3)). In the resulting data for 1/Γ(L, rc) vs. 1/L (Figure 3a),
a linear regime was identified between L=1 nm and 2 nm across all values of rc. This linear regime
was extrapolated to 1/L → 0, following Equation (1), to obtain 1/Γ(rc), which characterizes particle
number fluctuations in an infinitely long cylinder of radius rc in bulk water. It should be noted that
the simulation box behaves like a particle bath for the open small subvolumes. As the size of the
subvolume becomes comparable to that of the simulation box, this assumption breaks down. Thus,
data for large L values suffer from finite size effects and insufficient statistics. On the other hand,
for very small values of L corresponding to a few particle diameters, 1/Γ(L, rc) deviates from the
scaling relation (Equation (1)) as well. Therefore, the data for intermediate values of L were considered
for estimating the limiting bulk properties.
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Figure 2. Observation volumes used in this work to estimate thermodynamic properties. (a) The
isothermal compressibility of SPC/E water is estimated using cylindrical observation volumes, where
the TL corresponds to both 1/L → 0 and 1/rc → 0. (b) The thermodynamical quantities pertaining to
polymer hydration shells are estimated using concentric cylinders as observation volume. Here, the TL
corresponds to 1/L → 0.

Figure 3. (a) 1/Γ(L, rc) profiles for the cylindrical shells with radius rc in SPC/E water at T = 300 K,
as a function of 1/L. The lines are linear fits to the data in the range L = 1 - 2 nm. (b) 1/Γ(rc) for the
cylindrical shells as a function of 1/rc at T = 300 K, 360 K. The lines are linear fits to the data in the
range rc < 1.5 nm.

The data for 1/Γ(rc) vs. 1/rc presented a linear regime for rc < 1.5 nm (Figure 3b). This linear
regime was extrapolated to obtain 1/Γ∞, which is the thermodynamic limiting value of 1/Γ
corresponding to both 1/L and 1/rc → 0. The values of 1/Γ∞ (at 300 K and 360 K) were then
used to estimate the bulk isothermal compressibility of SPC/E water, using Equation (2). We estimated
the values of χT for SPC/E water to be 43.3×10−6 bar−1 and 56.0×10−6 bar−1 at 300 K and 360 K,
respectively. These values are comparable to those reported by Heidari et al. [43], who used the
finite size correction approach to estimate the compressibility of SPC/E water in the TL using the
scaling of particle number fluctuations with system size in cubical subvolumes. The values are also
in agreement with those estimated using volume fluctuation methods [44–46]: 46.1×10−6 bar−1 and
57.7×10−6 bar−1 at 298.15 K and 360 K, respectively. The agreement confirms the validity of the
current implementation of the SSM. In principle, one can also calculate the compressibility for each
small subvolume χ(L, rc) and use the same 1/L scaling to extrapolate it to the compressibility of the
infinite cylindrical shell χ(rc), which in the limit 1/rc → 0 will give the bulk isothermal compressibility
χT [47]. Thus, with the height of the shell L → ∞, one can assign 1/Γ(rc) and χ(rc) to be the properties
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of the particular shell with radius rc. This observation asserts the rationale behind choosing cylindrical
observation shells to study the thermodynamic properties of the hydration shells of a polymer.

3.2. Thermodynamic Properties of Polymer Hydration Shells

Thermodynamic properties for the individual hydration shells of the hydrophobic polymer
were estimated from the fluctuations in number of water molecules therein. Unlike the cylindrical
observation volumes in the SPC/E water case, the subvolumes were now concentric cylindrical shells
around the linearly stretched polymer chain (Figure 2b). The boundaries of these shells were identified
based on the local water number density around the polymer. At any value of α, this density was
characterized by the proximal radial distribution function (pRDF), gp(r). Unlike the radial distribution
function, g(r), where particles are identified and binned in spherical shells, the particles in this case
were binned in cylindrical shells around the polymer.

Figure 4 shows the polymer-water pRDFs for different values of the repulsive interaction strength,
α. As expected, the curves shifted to larger values of r while the peak heights decreased, indicating
that polymer-water density correlations decreased with increasing values of α. Correspondingly,
the shell widths also increased with increasing α (Figure S1 in the Supplementary). Similar to the
dependence of the effective polymer bead size, σeff

p (inset of Figure 1), on α, the pRDFs changed
significantly upon increasing α between α = 1 and α = 8, while the changes were smaller for larger
values of α. The thermodynamic properties of interest were sampled in the first two hydration
shells. The inner boundary of the first hydration shell was identified as the distance r1 at which
ρ
∫ r1

0 2πrlzdrgp(r) > 1. The subsequent minima in the gp(r) curves were identified as the boundaries
of the respective hydration shells.

Figure 4. Proximal polymer-water RDFs for various strengths of repulsive interaction parameter α.

The particle number fluctuations were sampled and fitted to calculate the thermodynamic limiting
quantities. Only the oxygen centers were used in the calculation. As in the case of SPC/E water, L was
sampled in steps of 0.1 nm, starting from L = 0.1 nm, and the observation volumes were translated
along the polymer axis (also in steps of 0.1 nm) for better statistics. Figure 5 shows the data for 1/Γs(L)
as a function of 1/L for the first hydration shell of the polymer, over the range of α used in this work.
The profiles were found to be linear over the intermediate L range, while the curves shifted upward
with increasing α indicating enhanced density fluctuations with increasing polymer-water repulsion.
The data over the range of L between 1.2 nm and 2.5 nm were fitted to a straight line to estimate
1/Γ∞

s , which was subsequently used to estimate χs. The values of 1/Γ∞
s and χs estimated this way are
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properties of the hydration shells that are essentially infinite along the polymer axis, but finite in the
other two dimensions and thus, do not pertain to a bulk system.

Figure 5. 1/Γs(L) profiles for the first polymer hydration shell for different values of the repulsive
interaction parameter α. The lines are linear fits to the data in the range L = 1.2–2.5 nm.

To evaluate the net effect of the polymer, the same properties, here denoted as 1/Γ•,∞
s and

χ•
s , were also evaluated in shells of exactly the same widths in a pure TIP4P/2005 water system

where the polymer was absent. The inverse thermodynamic correction factor, 1/Γ•,∞
s , of these shells

depended on α through the shell widths, which for the first hydration shell, increased with increasing
α (Figure S1 in the Supplementary). Both 1/Γ•,∞

s and χ•
s were found to decrease with increasing α

(Figures S2a and S3a in the Supplementary). It should be noted that unlike for bulk water where the
TL corresponds to both 1/L and 1/rc → 0, the hydration shell specific thermodynamic quantities were
estimated in the limit to 1/L → 0 alone, and therefore the values of the corresponding thermodynamic
quantities are expected to be different. The respective thermodynamic quantities for polymer hydration
shells and the corresponding shells in pure water were subtracted to estimate the sole effect of the
polymer on the hydration shell thermodynamics for varying α,

Δ1/Γ∞
s ≡ 1/Γ∞

s − 1/Γ•,∞
s ,

Δχs ≡ χs − χ•
s .

(7)

Figure 6 presents Δ1/Γ∞
s for the first two hydration shells of the polymer. Δ1/Γ∞

s was negative
for α=1 and increased with increasing α. A similar increase in density fluctuations was observed
in hydration shells of molecular sized hydrophobic solutes [24]. In the first hydration shell, Δ1/Γ∞

s
was negative for α < 8, indicating that particle number fluctuations in the first hydration shell were
lower than those in shells in pure water. Between α = 8 and 12, the difference between the particle
number fluctuations in the first hydration shell and the corresponding shell in pure water almost
vanished. For α > 8, the particle number fluctuations in the first hydration shell of the polymer were
larger than those in the corresponding shell in pure water. The inset in Figure 6 presents Δ1/Γ∞

s as
a function of the effective size of the polymer beads, σeff

p . The observed dependence indicated that
beyond σeff

p = 0.7 nm, particle number fluctuations in the first hydration shell of the polymer suddenly
increased. This observation is similar to the lengthscale crossover observed in the solvation of a
hydrophobic cavity in water, when the radius of the cavity is close to 1 nm [23]. The crossover occurs
as a result of the disruption of the hydrogen-bonded network of water near the surface of sufficiently
large cavities. While water can readily accommodate small solutes without significantly perturbing its
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hydrogen-bonded network, this is no longer possible near extended surfaces of large hydrophobic
solutes. As opposed to a single spherical solute, the hydrophobic polymer in our study resembled a
string of small beads at low α-values, while resembling an extended hydrophobic surface when σeff

p
approached 0.7 nm (keeping an equilibrium bond length of 0.153 nm).

As opposed to the first hydration shell, the density fluctuations in the second hydration shell
were found to be smaller than those in the corresponding pure water shells, even at α = 20 (Figure 6b).
An increasing trend in Δ1/Γ∞

s vs. α, similar to the trend in the first hydration shell, was observed, but
with an order of magnitude difference between the two. As water molecules in the second hydration
shell are not in direct contact with the polymer surface, the effect of increased polymer-water repulsion
is much lower in the second hydration shell as compared to the first hydration shell. This was expected,
as the fluctuations were observed to be maximum at the vicinity of the hydrophobic interface [48].

Figure 6. Δ1/Γ∞
s profiles for the first (a) and second (b) polymer hydration shell for various strengths

α of the repulsive interaction. The inset in (a) shows the variation of Δ1/Γ∞
s as a function of σeff

p . In (a),
the data points are grouped based on their variation with α (see text). The error bars are calculated
over four distinct windows in the production trajectory. The lines are guide to the eyes.

While we considered the hydration shell to be infinitely long (in the limit 1/L → 0), realistic
polymer hydration shells are strictly finite. In such a case, it is worthwhile to investigate how strongly
Δ1/Γs(L) of a finite hydration shell deviates from that in the macroscopic limit (Δ1/Γ∞

s ). We expect
that this difference is small for small α-values which correspond to stable hydration shells around
small polymer beads with an appreciable bead-water van der Waals attraction. We here consider the
variation of 1/Γs(L), 1/Γ•

s (L), and Δ1/Γs(L) for finite lengths of the first hydration shell corresponding
to L = 0.4, 0.8, 2.0, and 2.5 nm. While both 1/Γs(L) and 1/Γ•

s (L) were found to depend on the hydration
shell height (Figure S4 in the Supplementary), Δ1/Γs(L) was found to be independent of L in the
region α ≤ 8, where it was negative (Figure 7). Interestingly, a dependence on the hydration shell
dimension was observed for the systems with α > 8, corresponding to stronger hydrophobic polymers
with larger effective bead sizes and weaker bead-water van der Waals attractions. For these systems,
Δ1/Γs(L) increased with L (up to L = 2.0 nm), indicating that an extended hydrophobic surface created
by connected polymer beads caused enhanced water density fluctuations in the first hydration shell.

Figure 8 shows the data for Δχs vs. α for the first and second hydration shell. The compressibility
of both hydration shells increased with increasing α. As in the case of Δ1/Γ∞

s , the change in Δχs for
the second hydration shell was rather small. For the first polymer hydration shell, the compressibility
was smaller than that for the corresponding shells in pure water until α = 8. Between α = 8 and 12,
the hydration shell compressibility was almost identical to the compressibility of the corresponding
shells in pure water. For larger α-values there was a noticeable increase in the hydration shell
compressibility. This is similar to the case of hydration water of hydrophobic solutes [24], where the
local compressibility was found to increase for sufficiently large solutes. Figure 9 shows the tetrahedral
order parameter qtet of the first hydration shell of the polymer corresponding to various values of α
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and those calculated for shells in pure water. For shells in pure water, qtet remained almost constant
around 0.66, which corresponds to the optimal hydrogen bonding capacity for TIP4P/2005 water [49].
In contrast, the tetrahedral order in the polymer hydration shell decreased by 15% upon increasing α

up to α=8, at which point Δχs became positive. The number of hydrogen bonds per water molecule in
the first hydration shell showed a similar dependence (Figure S5).

Figure 7. Δ1/Γs(L)(= 1/Γs(L)− 1/Γ•
s (L)) profiles for finite-sized first hydration shells with heights

L = 0.4, 0.8, 2.0, and 2.5 nm as a function of the strength α of the repulsive interaction. The data points
are grouped based on their variation with α (as in Figure 6). The error bars are calculated over four
distinct windows in the production trajectory. The lines are guide to the eyes.

Figure 8. Δχs profiles for the first (a) and second (b) polymer hydration shell for various values of
the repulsive interaction parameter α. The inset in (a) shows Δχs as a function of σeff

p . In (a), the data
points are grouped based on their variation with α (see text). The error bars are calculated over four
distinct windows in the production trajectory. The lines are guide to the eyes.

The increase in density fluctuations, decrease in tetrahedral order, and increase in compressibility
in the first hydration shell of the hydrophobic polymer are in line with the trends expected in the case
of solvation of hydrophobic solutes in water [23,24,29,50].
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Figure 9. (a) Tetrahedral order parameter qtet for the first polymer hydration shell and
the corresponding shell in pure water for various strengths α of the repulsive interaction.
(b) Δqtet = qtet(polymer shell) − qtet(water shell) as a function of σeff

p . The error bars are calculated
over four distinct windows in the production trajectory. The lines are guide to the eyes.

4. Scope and Limitations

The polymer analyzed in this work is a generic homo-polymer in a restrained, stretched
conformation, where the monomeric units are represented by simple beads without any side chains.
It is essentially the simplest possible polymer system that could be analyzed in the current framework.
Applying the current approach to study chemically realistic polymer systems requires that several
technical challenges are addressed. Hill’s formalism [12,13] is framed for a large ensemble of equivalent,
independent, and distinguishable small systems. In the present context, this implies that the small
system must be at least the size of a monomeric unit and, therefore, L has to be chosen as an integer
multiple of the monomer length. Therefore, to effectively sample the density fluctuations, very long
chemically realistic polymer chains (much longer than the one considered here) need to be considered
in the simulations. For the generic polymer used in this work, 1/Γ is insensitive to whether density
fluctuations within the small system L are sampled by shifting it along the polymer backbone in steps
of 0.1 nm or in steps that correspond to a monomeric unit, essentially due to its linearly stretched
configuration. The same will not hold for flexible polymers as the monomeric units themselves
will differ in terms of the volume they occupy and, therefore, static observation volumes can no
longer be used to sample the fluctuations. Therefore, additional methodological progress requires
implementation of dynamical observation volumes.

In addition to the application of the SSM to a generic polymer model in pure water, mixed solvents
may be considered to be well. In this context, the SSM can be used to provide information on excess
chemical potentials and partial molar enthalpies and entropies of solvent components in the solvation
shell of the polymer based on analyses of energy and particle number fluctuations and the calculation
of KBIs. In particular, in systems where cosolvents and small organic molecules preferentially bind to
the polymer, a full characterization of solvation shell properties is needed to address open questions
related to the corresponding changes in aqueous polymer solubility [51–53]. The SSM provides a route
to calculate these properties.

5. Conclusions

We have extended the SSM to study the hydration shell compressibility of a generic hydrophobic
polymer in water. We identified the hydration shells based on the proximal distribution of water
molecules around a linearly extended polymer chain. Water density fluctuations were sampled in
small concentric cylindrical shells around the chain, which in the limit of the shell height L → ∞
resulted in thermodynamic quantities that could be assigned to the hydration shells. We systematically
varied the range of the polymer-water repulsion and observed a crossover behavior in the excess
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inverse thermodynamic correction factor (Δ1/Γ∞
s ) and the excess compressibility (Δχs) of the

hydration shells, defined relative to the properties of the same shells in pure water (without polymer).
The negative-to-positive crossover observed in Δ1/Γ∞

s and in Δχs happened at an intermediate range
of the polymer-water repulsion, where the effective polymer bead diameter was around 0.7 nm. We also
observed a complementary trend in the tetrahedral order parameter of the shell, which measured
the deviation in the hydrogen bonding coordination of water molecules from the ideal tetrahedrally
hydrogen-bonded structure.

The observations made in this work were in line with those reported for solvation of spherical
hydrophobic solutes in water [23,24,50]. It is well established that small hydrophobic cavities/
solutes are solvated by restructuring of water hydrogen bonds around them, while solvation of
large hydrophobic cavities occurs via breakage of water hydrogen bonds near the solute surface.
The signatures of these two distinct solvation mechanisms were observed in the present work in the
excess polymer hydration shell compressibility.
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H−bonds vs. α.
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Abstract: The accurate description of the behavior of fluids in nanoporous materials is of great
importance for numerous industrial applications. Recently, a new approach was reported to calculate
the pressure of nanoconfined fluids. In this approach, two different pressures are defined to take
into account the smallness of the system: the so-called differential and the integral pressures. Here,
the effect of several factors contributing to the confinement of fluids in nanopores are investigated
using the definitions of the differential and integral pressures. Monte Carlo (MC) simulations are
performed in a variation of the Gibbs ensemble to study the effect of the pore geometry, fluid-wall
interactions, and differential pressure of the bulk fluid phase. It is shown that the differential and
integral pressure are different for small pores and become equal as the pore size increases. The ratio
of the driving forces for mass transport in the bulk and in the confined fluid is also studied. It is
found that, for small pore sizes (i.e., <5σfluid), the ratio of the two driving forces considerably deviates
from 1.

Keywords: nanothermodynamics; porous systems; molecular simulation; differential pressure;
integral pressure

1. Introduction

The widespread application of nanoporous materials in several fields, such as chromatography,
membrane separation, catalysis, etc., has lead to a growing interest in the accurate description of the
thermodynamic behavior of fluids confined in nanopores [1–6]. The pressure of a nanoconfined fluid
is one of the most important thermodynamic properties which is needed for an accurate description
of the flow rate, diffusion coefficient, and the swelling of the nanoporous material [7–10]. Various
approaches for calculating the pressure of a fluid in a nanopore have been proposed [1,11–13]. The main
difficulty of the pressure calculation arises from the ambiguous definition of the pressure tensor inside
porous materials due to the presence of curved surfaces and confinement effects [7,14,15]. Traditional
thermodynamic laws and concepts, such as Gibbs surface dynamics, Kelvin equation, etc., may not be
applicable at the nano-scale [16]. In the past decade, several methods were reported using different
simulation techniques i.e., classical density functional theory [17,18], equation of state modeling [19],
etc., to model the behavior of fluids in confinement.

Recently, Galteland et al. [11] reported a new approach for the calculation of pressure in
nanoporous materials using Hill’s thermodynamics for small systems [20]. In this approach, two

Nanomaterials 2020, 10, 293; doi:10.3390/nano10020293 www.mdpi.com/journal/nanomaterials35
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different pressures are needed to account for confinement effects in nanoporous materials: the
differential pressure P, and the integral pressure p̂. In an ensemble of small systems, the differential
pressure times the volume change of the small systems is equal to the work exerted on the surroundings
by the volume change. The differential pressure corresponds to the macroscopic pressure and does
not depend on the size of the system. The addition of a small system to an ensemble of small systems
exerts work on the surroundings which is equal to the integral pressure times the volume of the added
small system. The differential and integral pressures are different for small systems and become equal
in the thermodynamic limit. For a system with volume V, the two pressures are related by [11,20]:

P(V) =

(
∂( p̂(V)V)

∂V

)
T,μ

= p̂(V) + V

(
∂( p̂(V))

∂V

)
T,μ

. (1)

As shown in Equation (1), the two pressures are different only when the integral pressure p̂ depends
on the volume of the system. Galteland et al. [11] performed equilibrium and non-equilibrium
molecular dynamics simulations of Lennard–Jones (LJ) fluids in a face-centered lattice of spherical
grains representing a porous medium. Using Hill’s thermodynamics of small systems [20] and the
additive property of the grand potential, Galteland et al. [11] defines the compressional energy (p̂V) of
the representative elementary volume (REV) in the simulations as follows:

p̂V = p̂fV f + p̂rVr − γ̂frωfr, (2)

where p̂ is the integral pressure of volume V, p̂f and Vf are the integral pressure and volume of the
fluid, p̂r and Vr are the integral pressure and volume of the grain particles, and the γ̂fr and ωfr are the
integral surface tension and surface area between the fluid and grain particles. Based on the obtained
results, it was concluded that the definition of two pressures is needed to calculate the pressure of the
fluid in nanoporous medium.

In this study, the relation between the differential and integral pressure is investigated by
performing Monte Carlo (MC) simulations of LJ fluids. The simulations are carried out in a modified
Gibbs ensemble, using two simulation boxes in equilibrium with each other. One box represents the
bulk fluid, while the other simulation box represents the nanoconfined system, including walls that
interact with the fluid particles, as shown in Figure 1. The effect of confinement on the integral pressure
is investigated by considering different fluid-wall interaction strengths and pore geometries, namely,
a cylinder and a slit pore. To investigate the relation between the differential and integral pressure,

the difference of the two pressures, P − 〈 p̂〉, and the ratio of driving forces for mass transport,
d〈 p̂〉
dP

,
are computed. In Section 2, the devised ensemble and the equations used to calculate the pressure
and energy of the system are presented. In Section 3, a rigorous derivation of the used expression
to compute the ratio of driving forces is shown. In Section 4, the results for the different differential
pressures and pore geometries are shown. In Section 5, our conclusions are summarized.
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Figure 1. Schematic representation of the Monte Carlo (MC) simulation scheme. Simulation Box 1
represents the bulk fluid with differential pressure P. Simulation Box 2 contains the confined fluid with
(average) integral pressure 〈 p̂〉. (a,b) The two investigated systems are shown where the bulk fluid
is in equilibrium with the nanoconfined fluid in a cylinder and in a slit pore, respectively. Due to the
particle exchange, the chemical potential of the two boxes are equal, but in general P �= 〈 p̂〉.

2. Simulation Details

All MC simulations are carried out using an in-house simulation code. The MC simulations
consist of two simulation domains, Simulation Box 1 and Simulation box 2 (see Figure 1). Throughout
the manuscript the terms Simulation Box 1 and 2 are used to refer to the two domains, however,
simulation domain 2 does not correspond to an actual box. The total number of particles in the
system, NT , is fixed and particles can be exchanged between the simulation boxes. Box 1 is cubic
and has periodic boundary conditions imposed in all directions. Box 1 represents a bulk fluid. The
differential pressure, P, and temperature, T, in Simulation Box 1 are imposed, while the volume, V1,
and the number of particles, N1, can fluctuate. Simulation Box 2 is a cylinder or a slit pore with a
fixed volume V2. The size of the cylinder and the slit pore are defined by the radius, R, and by the
distance between the two parallel planes, 2R, respectively (Figure 1). In Box 2, periodic boundary
conditions are applied only in the axial direction for the cylinder and in the x and y directions for
the slit pore (see Figure 1). Box 2 represents the confined fluid which has an integral pressure p̂. In
Simulation Box 2, the volume, V2, and temperature T are imposed, while the number of particles N2

can fluctuate by exchanging particles with Box 1. The instantaneous integral pressure fluctuates, and
by definition [20] its ensemble average, 〈 p̂〉, will be equal to P only for macroscopic systems (R → ∞).
The ensemble used is a variation of the NPT-Gibbs ensemble [21]. The main difference between the
ensemble used in this work and the conventional NPT-Gibbs ensemble is that in our simulations the
volume of Box 2 is fixed [21]. Essentially, Box 2 corresponds to the grand canonical ensemble with
the reservoir explicitly modeled in Box 1. This computational setup was also used in other studies,
i.e., A. Z. Panagiotopoulos et al. [21], P. Bai et al. [22], etc.

In the MC simulations, three types of trial moves are used: translation, volume change, and
particle exchange. The translation and particle exchange trial moves are used in both simulation boxes,
while volume change trial moves are only performed in Simulation Box 1. The acceptance rules of
the trial moves can be found elsewhere [23]. The particle exchange trial move, ensures that Box 1 and
Box 2 are in chemical equilibrium, i.e., the chemical potentials of the two boxes are equal (μ1 = μ2).
The chemical potentials of the boxes are defined as the sum of the ideal and excess chemical potentials
of the fluid in the respective box (μ1 = μid

1 + μex
1 , μ2 = μid

2 + μex
2 ). The ideal gas chemical potentials

(μid
1 , μid

2 ) are calculated based on the density and temperature of the fluid. The excess chemical potential
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(μex
1 , μex

2 ) can be calculated using different methods, i.e., Widom’s test particle insertion method [23],
Contionous Fractional Component Monte Carlo method [24,25], Bennet acceptance ratio method [26],
etc. Although the Bennet acceptance ratio method is computationally more efficient than the Widom’s
test particle insertion method, the Widom’s test particle method is sufficient for the systems considered
in this study. Separate simulations are carried out using different cylinder radii R, while imposing
P = 0.2 (in reduced units) in Box 1. In Figure 2, the chemical potential of Box 1 and Box 2 (Figure 2a),
as well as the density of Box 1 and Box 2 (Figure 2b), are shown as a function of the cylinder radius at
P = 0.2. As can be seen from Figure 2a, the chemical potentials of Box 1 and Box 2 are equal within the
uncertainties of the simulations.

Figure 2. The chemical potential (a) and density (b) of the bulk, Box 1, and confined fluids, Box 2, as a
function of the cylinder radius, R, at P = 0.2 (in Simulation Box 1). The blue and red colors represent
Box 1 and Box 2, respectively. The temperature is fixed at T = 2. All values are presented in reduced
units. The error bars are smaller than the symbol sizes.

In all simulations, the total potential energy, U, is calculated using the 12-6 LJ interaction potential:

U = Ufluid−fluid + Ufluid−wall, (3)

where Ufluid−fluid is the potential energy due to interaction between the fluid particles, and Ufluid−wall
represents the potential energy contribution from the interactions between the fluid particles and the
wall of Box 2. Ufluid−fluid in both simulation boxes is calculated according to:

Ufluid−fluid =

⎧⎨⎩∑i<j

[
4εfluid

((
σfluid

rij

)12 −
(

σfluid
rij

)6)− Ushift

]
rij < 2.5σfluid

0, otherwise
, (4)

where rij is the distance of particle i and j, Ushift makes the interaction potentially continuous at the
cut-off distance (2.5σfluid), and εfluid, σfluid are the LJ parameters. In the past, several studies were
reported using different types of interaction potentials to model the fluid-solid interactions in confined
spaces [22,27,28]. Since the aim of this study is to show the difference between the differential and
integral pressures and not to simulate some specific adsorption system, only two types of interaction
potentials are considered for the interaction of fluid particles with the wall in Simulation Box 2. In the
first case, the wall has only repulsive interactions with the fluid particles. The potential energy
contribution of this type is calculated based on the Weeks–Chandler–Andersen potential [29]:

Ufluid−wall =

⎧⎨⎩∑N2
i=0

[
4εfw

((
σfw
rwi

)12 −
(

σfw
rwi

)6)
+ 1
]

rwi < 21/6σfw

0, otherwise
, (5)
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where N2 is the number of particles in Box 2, rwi is the closest distance of particle i from the walls,
and εfw and σfw are the LJ parameters for the interaction between the wall and the fluid particles. In
the second case, the attractive interactions between the wall and fluid particles are taken into account
using the traditional form of the 12-6 LJ interaction potential:

Ufluid−wall =

⎧⎨⎩∑N2
i=0

[
4εfw

((
σfw
rwi

)12 −
(

σfw
rwi

)6)− Ushift−fw

]
rwi < 2.5σfw

0, otherwise
, (6)

where Ushift−fw makes the interaction potential continuous at the cut-off distance, and εfw and σfw are
the LJ parameters.

The expression for calculating the integral pressure in Box 2 is as follows[30]:

p̂ =
N2

V2
kBT + p̂fluid−fluid + p̂fluid−wall, (7)

where p̂fluid−fluid represents the contribution of the fluid-fluid interaction to the integral pressure, kB is
the Boltzmann constant, and p̂fluid−wall represents the contribution of the fluid-wall interaction to the
integral pressure. The p̂fluid−fluid, and p̂fluid−wall terms represent the virial contributions of the integral
pressure. The terms are calculated based on the virial theorem [7], i.e., using the derivative of the
potential energy function with respect to r. The pressure term p̂fluid−fluid is calculated as follows [7]:

p̂fluid−fluid =
48

3V2
εfluid ∑

i<j

((σfluid
rij

)12 − 0.5
(σfluid

rij

)6)
. (8)

The third term in Equation (7) represents the pressure contribution related to the interactions of the LJ
particles with the wall of Box 2. The term p̂fluid−wall for the repulsive wall potential is derived based
on Equation (5) [7]. The following expression is obtained:

p̂fluid−wall =

⎧⎨⎩∑N2
i=1

24
3V2

εfw

((
σfw
rwi

)12 − 0.5
(

σfw
rwi

)6)
rwi < 21/6σfw

0, otherwise
. (9)

The following expression is used to calculate the p̂fluid−wall when the wall has also attractive
interactions with the fluid [7]:

p̂fluid−wall =

⎧⎨⎩∑N2
i=1

24
3V2

εfw

((
σfw
rwi

)12 − 0.5
(

σfw
rwi

)6)
rwi < 2.5σfw

0, otherwise
. (10)

By comparing Equations (8)–(10), it can observed that the multiplication factor 48 in Equation (8) is
replaced by the factor 24 in Equations (9) and (10). This difference means that only 50 % of the fluid-wall
interactions are taken into account at the calculation of the p̂fluid−wall term [7]. In the MC simulations,
Equations (7)–(10) yield instantaneous values from which ensemble averages are computed, i.e., 〈 p̂〉.

In all simulations, the LJ parameters of the fluid particles are εfluid = 1, σfluid = 1, and the cut-off
radius is rcut = 2.5σfluid for the fluid-fluid interactions. Regardless of the type of interaction potential
used to calculate the interaction of the fluid particles and the wall in Simulation Box 2, the LJ parameter,
σfw = 1 is used. In the case of the purely repulsive wall potential, the LJ parameter εfw = 1 is used.
In case of the attractive wall potential, five different values for the εfw LJ parameters are considered:
εfw = 0.3, 0.5, 0.7, 1.0, 1.5. In this study, all of the reported parameters are in dimensionless units. The LJ
interactions are truncated and shifted (i.e., no tail corrections are applied). To avoid phase transitions,
the temperature is fixed at T = 2 [31,32].
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3. Theory

To investigate the difference between the differential and integral pressures, the ratio
d〈 p̂〉
dP

is

calculated. The term
d〈 p̂〉
dP

is the ratio of the pressure gradient for mass transport in the bulk phase,

dP
dL

, and in the confined space
d〈 p̂〉
dL

(see Figure 3). Essentially, the ratio of driving forces,
d〈 p̂〉
dP

, equals
the ratio of transport coefficients when either P or p̂ is used as driving force for mass transport in

the corresponding transport equation.
d〈 p̂〉
dP

is referred to as the ratio of driving forces throughout
this work. One possible approach to compute the ratio of driving forces is to perform simulations at
different imposed differential pressures and calculate the difference in the differential and integral
pressures. To avoid the necessity of performing several simulations, in this study the ratio of driving
forces is calculated based on the fluctuation theory. Using this approach, the ratio of driving forces can
be obtained by performing a single simulation.

Figure 3. Schematic representation of a bulk fluid in equilibrium with a nanoconfined fluid in a pore.

The concept of the ratio of driving forces for mass transport,
d〈 p̂〉
dP

, can be introduced based on the

definition of ratio of driving forces in the two systems,
d〈 p̂〉
dL

and
dP
dL

.

To obtain an expression for
d〈 p̂〉
dP

, the partition function of the system is needed [23]:

Q = C
NT

∑
N1=0

VNT−N1
2

N1! (NT − N1)!

∫ ∞

0
dV1 VN1

1 e−βPV1

∫
drNT e−βU , (11)

where C is a constant, β = 1
kBT , N1 is the number of particles in Box 1, NT is total number of particles

in the simulation, V1 is the volume of Box 1, V2 is the volume of Box 2, and U is the potential energy.
The ensemble average of a thermodynamic property X can be obtained using:

〈X〉 =
∑NT

N1=0
V
(NT−N1)
2

N1! (NT−N1)!

∫ ∞
0 dV1 VN1

1 e−βPV1
∫

drNT e−βUX

∑NT
N1=0

V
(NT−N1)
2

N1! (NT−N1)!

∫ ∞
0 dV1 VN1

1 e−βPV1
∫

drNT e−βU
. (12)
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Therefore, to obtain the expression for
d〈 p̂〉
dP

, the following relation is used:

d〈 p̂〉
dP

=
d

dP

∑NT
N1=0

V
(NT−N1)
2

N1! (NT−N1)!

∫ ∞
0 dV1 VN1

1 e−βPV1
∫

drNT e−βUp̂

∑NT
N1=0

V
(NT−N1)
2

N1! (NT−N1)!

∫ ∞
0 dV1 VN1

1 e−βPV1
∫

drNT e−βU
. (13)

By switching the order of the integration and differentiation, the following expression is obtained:

d〈 p̂〉
dP

=(
∑NT

N1=0

∫ ∞
0 dV1

∫
drNT

V
(NT−N1)
2 V

N1
1

N1! (NT−N1)!
(−β V1)e−βPV1 e−βUp̂

)
(

∑NT
N1=0

∫ ∞
0 dV1

∫
drNT

V
(NT−N1)
2 V

N1
1

N1! (NT−N1)!
e−βPV1 e−βU

)2

×
( NT

∑
N1=0

∫ ∞

0
dV1

∫
drNT

V(NT−N1)
2 VN1

1
N1! (NT − N1)!

e−βPV1 e−βU
)

−
(

∑NT
N1=0

∫ ∞
0 dV1

∫
dr V

(NT−N1)
2 V

N1
1

N1! (NT−N1)!
(−β V1)e−βPV1 e−βU

)
(

∑NT
N1=0

∫ ∞
0 dV1

∫
drNT

V
(NT−N1)
2 V

N1
1

N1! (NT−N1)!
e−βPV1 e−βU

)2

×
( NT

∑
N1=0

∫ ∞

0
dV1

∫
drNT

V(NT−N1)
2 VN1

1
N1! (NT − N1)!

e−βPV1 e−βUp̂
)

= 〈−βV1 p̂〉 − (〈−βV1〉〈 p̂〉) = β(〈V1〉〈 p̂〉 − 〈V1 p̂〉) = 〈V1〉〈 p̂〉 − 〈V1 p̂〉
kbT

.

(14)

The final expression in Equation (14) is essentially the cross correlation between V1 and p̂. In this
study, this expression is used to calculate the ratio of driving forces.

4. Results and Discussion

In this work, the difference between the differential and integral pressure, P − 〈 p̂〉, and the ratio

of driving forces
d〈 p̂〉
dP

, are investigated. Two different pore geometries, a cylinder and a slit pore, are
studied with varying fluid-wall interaction potentials. The effect of confinement is investigated for gas
(ρ ≈ 0.1) and liquid (ρ = 0.58, 0.8) phases, corresponding to P = 0.2, 2.0, 6.0, respectively.

4.1. Difference between the Differential and Integral Pressure

In Figure 4, the difference between the differential, P, and the ensemble average of the integral
pressure, 〈 p̂〉, is shown as a function of the inverse radius, R−1, of Box 2 for the cylindrical and slit pore
cases for the two types of wall potentials. As can be seen in Figure 4, as R−1 decreases, the difference
between the differential and integral pressure decreases in all cases. The data are fitted to AR−1+B,
where A and B are constants. The coefficient of determination of the fitted lines is above 0.99 showing
that the relation between the R−1 and P − 〈 p̂〉 is indeed linear. For large radii (R > 30σ), where the
fluid in Box 2 behaves like in the bulk, P − 〈 p̂〉 approaches 0, which is also indicated by the fitted
lines. In Figure 4a,c,e, the difference between the two pressures are shown for the cylindrical pore.
In Figure 4b,d,f, the difference in the pressures are shown for the slit pore. By comparing the magnitude
of P − 〈 p̂〉 for the cylindrical and slit pore cases, it can be seen that the pressure difference is larger
in the cylindrical pore than in the slit pore. The larger value of P − 〈 p̂〉 for the cylindrical pores can
be attributed to the stronger confinement effects compared to the slit pore. The stronger confinement
effects are also indicated by the steeper slopes (constant A in the fitted lines) of the cylindrical pore
compared to the slit pore. It can also be observed that by increasing the interaction strength between
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the wall of Box 2 and the fluid, εwf, the difference between the differential and integral pressure at
the same pore size decreases. By comparing the calculated values of P − 〈 p̂〉 for P = 0.2 and P = 6.0,
it can be seen that the effect of the interaction strength between the wall in Box 2 and the fluid, εwf, is
considerably larger at the lower differential pressure. For example, in the case of the slit pore, the ratio
of slopes of the fitted line for εwf = 1.0 and εwf = 1.5 at P = 0.2 is 0.88, as shown in Figure 4b, and at
P = 6.0 is 0.96, as shown in Figure 4f. This can be caused by the different number of particles inside
the pore at the two differential pressures. In the case of P = 0.2, by increasing the interaction strength,
more particles can enter the pore which results in larger integral pressures, while at P = 6.0, the pore
is practically saturated for all εwf; therefore, the interaction strength has a lower effect on the integral
pressure.

Figure 4. The difference between the differential, P, and the ensemble average of integral pressure, 〈 p̂〉,
is shown as a function of the inverse radius R−1 of Box 2 at P = 0.2, 2.0, and 6.0 for cylindrical and
slit pores with fluid-wall interactions. (a,c,e) The pressure difference is shown for cylindrical pores
at differential pressure P = 0.2, 2.0, and 6.0, respectively. (b,d,f) The pressure difference is shown for
slit pores at differential pressure P = 0.2, 2.0, and 6.0, respectively. The simulation results are shown
with symbols, while the lines are fits to the data points. The equation used for the fitting is AR−1 + B,
where A and B are constants. The colors denote the different level of attraction between the wall of Box
2 and the fluid, repulsive wall potential (black), εwf = 0.3 (blue), 0.5 (red), 0.7 (gray), 1.0 (orange), and
1.5 (cyan). The results for the cylindrical pore are shown with closed circles and for the slit pores with
open rectangles. The temperature of both boxes is set to T = 2. The average densities of Box 1 are ρ ≈
0.10, 0.58, and 0.8 at P = 0.2, 2.0, and 6.0, respectively.
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Based on the work of Galteland et al. [11], the slope of the fitted line can also be related to

the effective surface tension between the fluid particles and the wall in Box 2, i.e., P − 〈 p̂〉 ∼ γ̂fr
effective

R .
The linear relation between P − 〈 p̂〉 and R−1 shows that the effective surface tension does not depend
on the curvature of the wall. In Figure 4, it can be observed that the effective surface tension decreases
as the fluid-wall interactions become more attractive. In Figure 4a–f, it can be seen that the ratio of the
effective surface tensions (slopes of the fitted lines) for the same εwf with the slit and cylindrical pore
is nearly constant. For example, at εwf = 0.5 and P = 2.0, the ratio of the slope of the fitted lines for
the slit and cylindrical pore is ∼ 0.54, as shown in Figure 4c,d, and at εwf = 0.3 and P = 0.2, the ratio
of the two slopes is also ∼ 0.54, as shown in Figure 4a,b. The ratio of the effective surface tensions
between the slit and cylindrical pores are in the range of ∼0.52–0.56 and considered constant since it is
within the uncertainties of simulations. The constant ratio of effective surface tension between the slit
and cylindrical pore also indicates the larger confinement effects in the cylindrical pore.

4.2. Ratio of Driving Forces

In Figure 5, the ratio of driving forces for mass transport,
d〈 p̂〉
dP

, is shown as a function of the

inverse radius of Box 2, R−1, at three different pressures, P = 0.2, 2.0, 6.0, for both the slit and cylindrical

pores. From Figure 5, it can be observed that
d〈 p̂〉
dP

is considerably smaller than 1 for small pore sizes.
This means that a change in the differential pressure, P, of Box 1 results in a smaller change in the
integral pressure, 〈 p̂〉, of Box 2. This difference underlines the effect of the confinement on the pressure
of the fluid in nanopores and shows the difference in driving forces in the bulk and confined fluid.

As R increases,
d〈 p̂〉
dP

approaches 1, i.e., the fluid in the pore behaves more like a bulk fluid. As can be

seen in Figure 5,
d〈 p̂〉
dP

is larger for the slit pore than for the cylindrical pore at the same conditions. This
means that in case of the slit pore a change in the differential pressure, P, results in a larger difference
in the integral pressure, 〈 p̂〉, than for the cylindrical pore. The larger change in the integral pressure
indicates that the confinement effects are weaker in the slit pore. In Figure 5a,b, it can be observed that
by increasing the interaction strength between the wall of the pore and the fluid particles, the ratio
of the driving forces decreases. At higher differential pressures the decrease in the ratio of driving
forces due to the increasing fluid-wall interaction strength becomes less pronounced, as shown in
Figure 5c–f. The smaller influence of the interaction strength, εfw, on the ratio of driving forces may
be caused by the increasing contribution of the fluid-fluid interactions to the integral pressure due to
the larger number of fluid particles in the pore at higher differential pressure. In Figure 5a–f, the ratio
of driving force is shown for the slit and cylindrical pores at the same differential pressure. It can be
seen that the ratio of the slopes of the fitted lines for the same value of εwf with the slit and cylindrical
pore is constant within the uncertainties of the simulations. The ratio of the slopes is in the range of
∼0.52–0.58, which indicates that the confinement effects in the cylindrical pore are almost twice as
strong as in the slit pore.
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Figure 5. The ratio of driving forces, d〈 p̂〉
dP , is shown as a function of the inverse radius, R−1, of

Box 2 at P = 0.2, 2.0, and 6.0 for the cylindrical and slit pore cases with repulsive and attractive
wall potentials. (a,c,e) d〈 p̂〉

dP is shown for cylindrical pores at differential pressure P = 0.2, 2.0, and

6.0, respectively. (b,d,f) d〈 p̂〉
dP is shown for slit pores at differential pressures P = 0.2, 2.0, and 6.0,

respectively. The simulation results are shown with symbols, while the lines are fits to the data points.
The equation used for the fitting is AR−1 + B, where A and B are constants. The results for the
cylindrical pore are shown with closed circles and for the slit pores with open rectangles. The colors
denote the different wall potential used in Box 2, repulsive wall potential (black), εwf = 0.3 (blue),
εwf = 0.5 (red), εwf = 0.7 (gray), εwf = 1.0 (orange), and εwf = 1.5 (cyan). The temperature of both
boxes is set to T = 2. The average densities of Box 1 are ρ ≈ 0.10, 0.58, and 0.8 at P = 0.2, 2.0, and 6.0,
respectively.
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5. Conclusions

In this study, the new approach reported by Galteland et al. [11] is used to investigate the effects
of confinement on a fluid in a nanopore by performing MC simulations. The simulations are carried
out in a variation of the Gibbs ensemble with two simulation boxes in chemical equilibrium. One
of the simulation boxes represents the bulk fluid with differential pressure P, and the other a slit or
cylindrical pore with repulsive or attractive wall interaction potential. In case of the attractive wall
potentials, several scenarios are considered for the strength of the interaction between the wall and the
fluid particles. The effect of confinement is investigated for three differential pressures, P = 0.2, 2.0,
6.0, corresponding to gas (ρ ≈ 0.1) and liquid phases (ρ = 0.58, 0.8). It is concluded that the difference
between the differential and integral pressure P − 〈 p̂〉, for all studied cases, approaches 0 when R →
∞. It is shown that the increase in the interaction strength between the wall and the fluid particles has
smaller effect on the difference in the pressures, P − 〈 p̂〉, as the differential pressure increases. Based
on the work of Galteland et al. [11], the difference of the differential and integral pressure is related
to the effective surface tension between the fluid particles and wall of the pore. It is shown that the
effective surface tension does not depend on the curvature of the wall. It is found that by considering
a bulk fluid in equilibrium with a cylindrical or slit nanopore, the ratio of driving forces for mass

transport in the bulk phase is larger than in the nanopore (
d〈 p̂〉
dP

<< 1) for small pore sizes. As R

increases,
d〈 p̂〉
dP

approaches 1, i.e., the fluid in the pore behaves more like a bulk fluid. This clearly
shows that the approximation that p̂ ≈ P does not hold on the nanoscale.
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Abstract: It is known that thermodynamic properties of a system change upon confinement. To know
how, is important for modelling of porous media. We propose to use Hill’s systematic thermodynamic
analysis of confined systems to describe two-phase equilibrium in a nanopore. The integral pressure,
as defined by the compression energy of a small volume, is then central. We show that the integral
pressure is constant along a slit pore with a liquid and vapor in equilibrium, when Young and
Young–Laplace’s laws apply. The integral pressure of a bulk fluid in a slit pore at mechanical
equilibrium can be understood as the average tangential pressure inside the pore. The pressure
at mechanical equilibrium, now named differential pressure, is the average of the trace of the
mechanical pressure tensor divided by three as before. Using molecular dynamics simulations,
we computed the integral and differential pressures, p̂ and p, respectively, analysing the data with
a growing-core methodology. The value of the bulk pressure was confirmed by Gibbs ensemble
Monte Carlo simulations. The pressure difference times the volume, V, is the subdivision potential of
Hill, (p − p̂)V = ε. The combined simulation results confirm that the integral pressure is constant
along the pore, and that ε/V scales with the inverse pore width. This scaling law will be useful for
prediction of thermodynamic properties of confined systems in more complicated geometries.

Keywords: pressure; confinement; equilibrium; thermodynamic; small-system; hills-thermodynamics;
pore; nanopore; interface

1. Introduction

It is well known that thermodynamic properties of fluids significantly change when the fluid
phases become confined [1,2]. Given the importance of porous media for applications in for example
fuel cells [3], batteries [4], and membranes for drinking water production [5–7], it is essential to
understand how properties change upon confinement. In particular, one would like to be able to
predict how thermodynamic properties of the system change with size. We have earlier documented
how the thermodynamic factors and the pressures of some systems scale with a characteristic inverse
system size (surface area over volume) [8–10]. The aim of the present work is to continue this line
of work and present a geometric scaling law for the pressure of a nanopore. This work can, in a
general context, be seen as an extension of Hill’s thermodynamics of small systems [11]. The essential
idea of Hill was to introduce a large ensemble of N small systems, enabling the use of standard
thermodynamic tools for the ensemble. System properties were obtained by dividing the ensemble
value by N . In this way, he was able to deal with the impact of shape- and size-variation of the
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small system, within the normal structure of thermodynamics. The dimensions of a nano-pore, which
make molecular interactions at the pore surface important, can promote changes in phase transitions,
surface adsorption, pore vapor pressure, and phase stability [2,12–14]. The literature offers, however,
several definitions of the pressure inside a nano-porous material [15,16]. This situation calls for a
robust definition of the representative elementary volume (REV) of the small system, to serve as a
basis for a definition of pressure. Kjelstrup et al. [17] offered a definition of the REV-pressure based
on the compression energy of the REV. Galteland et al. [18] showed, by evaluating this property for a
single component in a nanoporous system, that the REV was not sufficiently described by the bulk
fluid pressure. Also the integral pressure, p̂, as defined by Hill was required to describe the degree of
confinement in the REV. In Hill’s [11] terminology, one distinguishes between the integral pressure p̂,
and the differential pressure, p. Erdos et al. [10] provided an expression for the ratio of the driving
forces for adsorption into a pore, by means of the integral and differential pressures. They expressed
the ratio by the cross-correlation of the volume and the integral pressure.

Hill defined the difference of the two pressures times the volume by the subdivision potential
ε = (p − p̂)V [11]. The integral pressure can differ significantly from the differential pressure in
confined systems [10,18]. In the limit of a bulk fluid, they are the same, however. Galteland et al.
studied pores between an fcc type-lattice of spheres [18], and found that the difference in the differential
and integral pressure depended on the inverse radius of the spheres in the lattice. Here, we investigate
a slit pore of nano-scale dimensions, with a constant pore slit-width ranging from 3 to 5 nm, and filled
with a vapor and liquid phase of the same component. The purpose is to find thermodynamic and
mechanical equilibrium conditions in terms of the pressures defined by Hill, and compare these to
existing descriptions in terms of Young’s and Young–Laplace’s laws. The analysis leads to a new
equilibrium condition, stated in terms of the integral pressure: This property is constant along the
nano-sized pore. When this condition is combined with Youngs’ equation for the contact angles,
one recovers the Young–Laplace equation.

For the geometry studied here, it is possible to derive a scaling law for the integral pressure.
The pore shape is kept constant in the derivations, as shape is a variable in small system
thermodynamics [19]. The new scaling law relates properties of one system size to another size,
with the same shape. This is helpful in a situation where measurements are lacking. Hill extended
the thermodynamic variable set, including an ensemble of the small system, thereby providing a new
basis for introduction and examination of size effects in thermodynamics. Hill’s formulation of surface
thermodynamics contain Gibbs’ method [20].

Molecular dynamics and Monte Carlo simulations [10,21] are excellent tools for equilibrium
studies of confined systems. Two fluid phases will be simulated in a slit pore of varying width. Focus
is directed to the equilibrium conditions, when single phases are in contact with each other and the
wall. The choice of the system was motivated by the simple geometry, which makes it possible to test
particular scaling laws for slit pores and cylindrical pores.

The structure of the paper is as follows: We first present the equations of a REV leading to the
relation between the differential pressure p and the integral pressure p̂. We next test the derived
equations for slit pores of different sizes and different interactions between pore wall and fluid.
The new growing-core methodology, brings out the difference between the differential and the integral
pressure. Finally, results are discussed and put in perspective.

2. Theory

2.1. Thermodynamic Relations for Small Systems

Hill used the name “small system” for systems with properties that are not extensive in the
system volume [11]. Such systems are frequently confined, i.e., bounded by the surroundings.
To obtain a generalized thermodynamic description of small systems, and to deal with size and
shape-dependencies, Hill [11] introduced an ensemble of N identical and independent replicas of the
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small system. Keeping the total entropy St, and particle number, Nt, constant, while increasing the
number of small systems N (each with constant volume V) in the ensemble, an extended version of
the Gibbs equation was obtained:

dUt = TdSt − pNdV + ∑
j

μjdNj,t − p̂VdN (1)

which we call the Hill-Gibbs equation. Here, Ut is the total internal energy of the ensemble, T is
the temperature, p is the pressure, and μj is the chemical potential of component j. The new term,
− p̂VdN , is the reversible work needed to change the total volume, by changing the number of small
systems, keeping St, V, and Nt,j constant.

Hill [11] distinguished between p and p̂ by calling the properties the differential and integral
pressure, respectively. This work aims to elucidate the difference of these variables for a small system
which is confined to a pore, in the grand-canonical ensemble.

The average values in the grand-canonical ensemble for a single small system are

U =
Ut

N , Nj =
Nj,t

N , S =
St

N . (2)

By introducing these equations into Equation (1), we obtain the usual Gibbs equation for dU, and
what we call the Hill-Gibbs-Duhem’s equation.

d( p̂V) = SdT + ∑
j

Njdμj + pdV (3)

The equation reduces to the usual Gibbs-Duhem equation when p̂ = p. When T and μj are
constant in Equation (3), we obtain a relation between the integral and differential pressure when the
shape of the system is controlled [11]:

p =

(
∂ p̂V
∂V

)
T,μ

= p̂ + V
(

∂ p̂
∂V

)
T,μ

. (4)

The expression shows that p and p̂ differ for small systems, for which p̂ depends on the volume.
In a macroscopic system, with V → ∞, p and p̂ are the same. The relation clarifies the chosen names;
p is obtained by differentiation.

The above equations will be applied to a two-phase system in a slit pore and a cylindrical pore.
Inside the pore, the differential pressure of the liquid differ from that of the vapor phase. For the
time being, we introduce the notation pv

d and pl
d for the differential pressure of the vapor and liquid,

respectively, and p f
d to indicate either of the two. The difference of the differential and the integral

pressure times the volume is equal to the subdivision potential [11], ε. By rearranging Equation (4),
using p f

d = p, we obtain:

p − p̂ =
ε(T, V, μj)

V
= V

(
∂ p̂
∂V

)
T,μj

. (5)

The subdivision potential is an additive thermodynamic property [11]. When such a property is
divided by the small system volume, a scaling law can be found; of a similar type as we have found
earlier [8,9]. The ratio ε/V is proportional to the the inverse characteristic size Ω/V of the system,
where Ω is the surface area between the fluid and the solid [18]. In general terms,

p − p̂ =
ε

V
= ζ∞ + ζs

(
Ω
V

)
+ ζse

(
Ω
V

)2
+ ... (6)

The coefficients ζ∞, ζs and ζse do not depend on Ω/V, but are functions of T and μj. As p and p̂
are equal in the thermodynamic limit, it follows that the coefficient ζ∞ = 0.
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2.2. The Integral Pressure of a Representative Volume Element

To define the differential and integral pressures, and the conditions for thermodynamic and
mechanical equilibrium between two phases within a pore, we need suitable REVs. In a porous
medium with two fluid phases, we need more than one type of REV, one for each phase. A REV needs,
as the name says, to be representative for all molecular interactions in the system [17]. It should be
large enough to contain a statistically representative amount of the fluids and solids. The purpose
of the REV is to define a volume element, to be used to define equilibrium, but also to define local
equilibrium in a large system where fluid transports take place [17].

A liquid droplet in equilibrium with its vapor inside a slit pore is an example of a two-phase
confined fluid. The droplet system is illustrated in Figure 1. Various REVs are possible. Each REV
need to cover the whole cross section of the pore. In the following we are concerned with two REVs,
one in the vapor- and one in the liquid phase. None of them includes the surface between liquid and
vapor. Two examples of REVs (REV1 and REV2) are illustrated in Figure 1. The x-axis is located at the
center of the pore.

Figure 1. Slit pore of width 2a with a liquid droplet in the middle, which is in equilibrium with a vapor
phase on both sides. The representative volume elements are REV1 (vapor of volume Vv) and REV2

(liquid of volume Vl), both with length d. The x-axis is located at the center of the pore.

The integral pressure of an isothermal REV with constant chemical potentials is expressed in
terms of the compression energy, p̂V, which is defined by the grand potential, Υ [11].

p̂V = −Υ ≡ kBT ln Ξ (7)

Here kB is the Boltzmann constant and Ξ the grand-canonical partition function. Similar to ε,
also the compression energy is additive. It is the sum of contributions from all phases and interfaces
present within the REV. The grand potential provides then the statistical mechanical link to particle
behaviour, and is a tool for pressure computations (see below). The system is small in the sense of Hill,
when the integral pressure deviate from the (bulk) fluid pressure.

The general expression for the compression energy for a REVn, with n = 1, 2 is then

p̂REVn V = p̂ f V f − γ̂ f sΩ f s (8)

where V is the volume of the REV, V f is the volume of the fluid, Ω f s is the surface area between the
fluid and the wall, and γ̂ f s is the integral surface tension at the wall, or the surface tension of the small
system. In the present case, the two REVs are completely filled with a fluid; a vapor (REV1) or a liquid
(REV2). The REV volume in both cases obeys V = V f = Vv = Vl = 2adw, where a is the slit pore half
width, d the REV length and w the width of the REV. Superscripts v and l refer again to the vapor and
the liquid. The surface area between fluid and solid is Ω f s = 2dw. The surface tension between fluid
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and pore surface are γ̂ls and γ̂vs, respectively, where the hat indicate that the system may be small.
In that case, the surface tension is a function of the contact area/system geometry.

For sufficiently large values of a, the fluid in the center of the pore has macroscopic bulk properties.
In that case; the integral pressure in the vapor p̂v and the liquid p̂l are independent of Vv or Vl ,
respectively, and

p̂v = pv, p̂l = pl . (9)

Here, pl and pv are bulk pressures of the liquid and vapor, respectively.
In a slit pore, the wall surface is not curved. When the distance between the walls (2a) is sufficiently

large, the fluid–solid surface tension show macroscopic behaviour, and:

γ̂vs = γvs, γ̂ls = γls. (10)

By introducing the expressions, Equations (9) and (10), the volume and the fluid–solid surface
area into Equation (8), we obtain expressions for the integral pressure of the liquid and vapor REVs:

p̂REV2 = pl − γls

a
, p̂REV1 = pv − γvs

a
. (11)

Suppose now that integral pressure is constant everywhere at equilibrium, or that:

p̂REV2 = p̂REV1 . (12)

This means we can write:

pl = pv +
γls − γvs

a
(13)

Young’s law derives from a force balance at phase equilibrium:

γls = γvs + γlv cos θ, (14)

Here γlv is the liquid-vapor surface tension. We introduce this law in the equation above
and obtain:

pl = pv +
γlv

a
cos θ = pv +

γlv

R
. (15)

This is Young–Laplace’s equation for a slit pore. Young–Laplace’s equation has been verified
in the experimental literature numerous times [22,23]. The radius of curvature of the liquid-vapor
surface, R = a/ cos θ, was used, where θ is the contact angle at the pore wall, see Figure 1. We have
found this equation without examining the liquid-vapor interface per se.

Equation (12) is thus equivalent to validity of the laws of Young and Young–Laplace.
These familiar laws apply to thermodynamic and mechanical equilibrium, so we expect the equality to
do the same. In this sense we have derived a new way to express phase equilibrium in nanopores.

Consider again a state of equilibrium where the integral pressure is constant. The integral
pressures of the fluids are shown by Equation (11). For each fluid, the difference of the differential and
integral pressure for the slit pore follows from Equation (4):

p − p̂ = a3
(

∂ p̂
∂a3

)
T,μ

=
γ f s(α)

3a
. (16)

where we have indicated that the surface tension depends on a parameter α which characterizes
the molecular interactions of the fluid and the wall. The shape is a variable in small system
thermodynamics, and remains constant when we determine the derivative. To keep the shape constant,
means to take the isomorphic derivative of the integral pressure in Equation (16).
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A change from the slit pore to a cylindrical pore, will change the proportionality factor in a
concrete way. The ratio of the area over the volume in the REV of a cylindrical pore is double the value
in a slit pore. The ratio of the slope in a cylindrical pore over that from a slit pore is therefore equal
to 2. The corresponding scaling law for a cylindrical pore becomes:

p − p̂ = a3
(

∂ p̂
∂a3

)
T,μ

=
2γ f s(α)

3a
. (17)

By changing the geometry of the pore only, keeping the fluid wall interactions constant, we predict
that the slope of pressure difference vs the surface tension will change by a factor 2.

For large systems (when a → ∞), the difference between p and p̂ disappears, leading to
p = p̂ = p f in the REV. For small systems, however, the difference between p and p̂ is described
by the ratio between fluid–solid surface tension and the half channel width (γ f s/a) divided by 3.
We have thus found that the pressure difference follows a scaling law, similar to the one proposed by
the Small System Method [8,9], and given in Equation (6).

Equation (16) can be tested by molecular dynamics simulations. In such a test, one can identify
independently all terms in the equation, and confirm that the condition p̂REV1 = p̂REV2 holds. Essential
in the calculation is that p and p̂ refer to the same volume.

These theoretical results demonstrate why it may pay to take the effort to invoke the perhaps
more complicated thermodynamic scheme of Hill. Young and Young–Laplaces’ laws describe
the same physical phenomenon as Equations (16) and (17). Hill’s theory shows how the two
Equations (16) and (17) are linked to each other and to new variables (e.g., ε), in manners which
can be tested.

2.3. A Mechanical Interpretation of the Pressures

The above derivation showed that the condition of constant integral pressure at equilibrium is
required by Young’s and Young–Laplace’s laws. The integral and differential pressures are therefore
also related to the mechanical pressure tensor. The mechanical pressure tensor will from now be
denoted with upper case P, while the thermodynamic pressures are denoted as before, with lower case
p. A complete set of relations between P and p is provided in the Appendix A. Here, we present the
main relations.

Consider again the liquid droplet in a slit pore, as shown in Figure 1. The slit pore wall is parallel to
the yz-plane. The pressure tensor component acting normal to the wall is the xx-component, PN = Pxx

(cf. the Appendix A). There are two tangential components of the pressure tensor, the yy-component
and the zz-component, which are equal in equilibrium. The tangential pressure tensor component is
the average of the two, PT = 1

2 (Pyy + Pzz). The surface tension is minus the excess of the tangential
pressure tensor [24],

γ f s =
1
2

∫ a

−a
(PN(x)− PT(x))dx. (18)

The factor of one half accounts for the fact that the integral is for two fluid–solid surfaces.
By introducing the fluid–solid surface tension into the equation for the integral pressure of a single
fluid phase, cf. Equation (11), we obtain

p̂ = p f − 1
2a

∫ a

−a
(PN(x)− PT(x))dx, (19)

where superscript f again refers to either the liquid or vapor. The normal component of the mechanical
pressure tensor is constant through flat surfaces at mechanical equilibrium. The integral of the normal
component divided by 2a is therefore equal to PN . We assume that the normal component is equal to
the differential pressure of the bulk fluid, p f = PN . Below, the assumption is shown to hold.
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The differential pressure of the bulk fluid and the integral over the normal component of the
pressure cancel each other, and the integral pressure is equal to the average tangential component,

p̂ =
1
2a

∫ a

−a
PT(x)dx = 〈PT〉. (20)

This equation shows that the integral pressure of a bulk fluid in a slit pore at mechanical
equilibrium can be understood as the average tangential pressure.

The differential pressure can also be related to the mechanical pressure tensor. The difference
between the differential and integral pressures is equal to the fluid–solid surface tension divided by 3a.
By introducing Equation (18) for the fluid–solid surface tension, we obtain

p − p̂ =
1
6a

∫ a

−a
(PN(x)− PT(x))dx (21)

By reorganizing and inserting the average of the tangential pressure for the integral pressure,

p =
1
3
(〈PN〉+ 2〈PT〉) = 1

3
Tr〈P〉 (22)

The differential pressure is equal to the average of the trace of the mechanical pressure tensor
divided by 3.

3. Simulations

3.1. Molecular Dynamic Simulations

3.1.1. System

Simulations were carried out for a droplet in a slit pore. The droplet in the middle of the pore was
surrounded by its vapor phase on both sides (see Figure 2). The simulation box, with the side lengths
Lx = Ly �= Lz had periodic boundary conditions in all directions.

Figure 2. System used in the simulation. The droplet in the middle of the slit pore is surrounded by a
vapor phase on both sides.

The simulation box was divided into n rectangular layers along the z-axis with a layer thickness
of Δz = Lz/n. Both the pore-wall (grey) and the fluid (red) consisted of Lennard-Jones/spline
particles [25]. The particles of the wall were immobilized, such that the particles were able to interact
with the fluid particles, but not move. Due to periodic boundary conditions, the wall thickness was
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t = 3.5σ0 and had a density of ρwall = 1.05. The fluid inside the pore was initialized in a way that the
overall density inside the pore was ρ f luid = 0.27, thus in the two phase regime [25]. The averaged
density of the bulk liquid was ρliquid = 0.75 ± 0.0015 and the one of the vapor ρvapor = 0.03 ± 0.0025.

The simulations were carried out using LAMMPS [26] in the canonical (NVT) ensemble at a
temperature of T∗ = 0.70. The Nosé-Hoover thermostat [27] was used to keep the temperature constant.
We used Lennard-Jones reduced units, which are indicated by superscript * [28]. The system was
simulated for four slit widths, a = 8.7σ0, 10.45σ0, 12.2σ0 and 13.7σ0. The half channel widths were
chosen so that both, the pressure of the fluid in the center, p f , as well as the fluid–solid surface tension,
γ f s, are independent of the distance a, i.e., they show macroscopic bulk properties. Furthermore,
the slit widths are large enough to avoid the effect of the disjoining pressure, as discussed in [13].

3.1.2. Particle Interaction Potential

The interaction between particles of type i and j was defined by the Lennard-Jones/spline
potential [25,28],

uij(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4εij

[(
σij
r

)12 − αij

(
σij
r

)6
]

if r < rs,ij

aij(r − rc,ij)
2 + bij(r − rc,ij)

3 if rs,ij < r < rc,ij

0 if r > rc,ij

(23)

where r is the distance between the particles. The interaction parameters, εij and σij, were set to 1 for
all particle pairs (Lennard-Jones units). The interaction parameter αij is used to control the attractive
interaction between the wall and the fluid, where we used αs f = 0.05, 0.15 and 0.25. For wall-wall and
fluid-fluid interactions the interaction parameter was set to αss = α f f = 1. All αs f values represent a
strong, repulsive interaction between wall and fluid, thus a non-wetting behaviour. The parameters aij,
bij, rc,ij and rs,ij were determined such that the potential and its derivative are continuous functions at
rs,ij = 1.24σ and rc,ij = 1.74σ [25].

3.1.3. Computation of REV Pressures and Wall-Fluid Surface Tension

The mechanical pressures in any layer l or combination of layers, or in a REV (core plus all layers
included), were computed following Kirkwood [24]:

Pβκ =
1

3V ∑
i∈l

mi(vi,β − vm,β)(vi,κ − vm,κ)− 1
6V ∑

i∈l

N

∑
j=1

(rij,β fij,κ). (24)

The subscripts β and κ denote the Cartesian coordinates, x, y and z, while V is the volume of the
layer, mi is the mass of particle i, vi,β is the velocity of fluid particle i in the β-direction, and vm,β is the
average velocity in the β-direction. This velocity is zero in our equilibrium simulations. The properties
rij,β and fij,β are, respectively, the distance and the force between particle i and j in the β-direction.
The first term is the kinetic energy contribution from the particles, and the second term arise from
pairwise interactions. Because of isotropy, the tensor is diagonal (see Appendix A).

Half the value of the pairwise energy contribution is assigned to the layer that contains particle
i, while the other half is assigned to the layer that contains particle j. A more precise distribution
of the contributions is available [29–32], but the present method has sufficiently small errors for the
volumes used.

The pressure of a fluid volume element was calculated, starting with the core of the pore (lightest
color in Figure 3), which has volume V1. Volume was gradually added to the core, including in the
end also the wall (black color in Figure 3). In this manner, the volume of the core was growing, layer
by layer, until in the end s − 1 layers were added to the central core. The pressure was computed for
the core (V1), for the core plus one subsequent layer (V2), and for the total volume (Vtot). The total
volume, Vtot, is equal to the volume V of the REV (see Figure 1). Thus, the pressure was computed
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in growing pore core -volumes until the volume was large enough to cover the whole width (2a) of
the pore. This new growing-core methodology enabled an calculation of the pressure in the center
of the pore (the core) and the averaged pressure of the whole cross section of the pore, including all
interactions with the pore wall. When all layers plus the wall inside the pore were included (Vtot),
we obtained p̂ of the REV. As long as there is no impact of the wall, (the core plus layers is sufficiently
far away from the wall) we observed the bulk fluid pressure, p f . This procedure was applied to two
REVs, one in the liquid and one in the vapor phase.

Figure 3. The core layer of the slit pore (lightest color) and subsequent layers (progressively darker
color) used in the calculation of the pressure tensor of the fluid. V1 and V2 are the volumes of the core
and the core plus one layer, respectively. Vtot is the total volume, covering all interactions with the
pore wall.

The fluid–solid surface tension was computed as the excess of the tangential pressure tensor
component [24] from Equation (18).

The extrapolated normal component PN was taken to be equal to the pressure in core, where
the fluid–solid surface has no effect on the pressure. The tangential component of the pressure was
calculated using PT = 1

2 (Pyy + Pzz). The value was obtained using a low resolution in x-direction and
by averaging over multiple chunks of the liquid phase, along the pore in the z-direction.

3.2. Gibbs Ensemble Monte Carlo

In the derivation of Equation (20), the pressure tensor normal to the slit pore wall, PN , is assumed
to be equal to the bulk pressure p f . This assumption was tested using Gibbs ensemble Monte Carlo
simulations for two values of p f (0.2 and 6.0 reduced units). The method is the same as reported
recently by Erdős et al. [10]. In the simulations, two simulation boxes were defined. Simulation box
1 represents a reservoir of a bulk fluid with periodic boundary conditions applied in all directions.
The fluid particles interact with the shifted and truncated Lennard-Jones potential with σ = 1, ε = 1
and cut-off rc = 2.5. The pressure, p f , and temperature, T, of the fluid in simulation box 1 are imposed,
while the number of particles, N1, and the volume of the box can fluctuate. Simulation box 2 was a slit
pore with fixed volume and temperature. The size of the slit pore was defined by the distance between
the two parallel planes, 2a. In simulation box 2, periodic boundary conditions were applied in the
directions parallel to the planes. The total number of particles, N1 + N2, was fixed in the simulations.
Simulation box 1 and 2 can exchange particles, which ensured that the two boxes were in chemical
equilibrium. The pressure of the fluid in simulation box 2 was equal to the differential pressure in
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equilibrium with the pressure imposed in the reservoir (box 1), p f . A more detailed description of the
simulation setup is given by Erdős et al. [10]. The high and low pressures were computed for varying
pore sizes a.

4. Results and Discussion

The results for the independent computations of the pressure of a bulk fluid and corresponding
pressure in the pore, using Gibbs ensemble Monte Carlo simulations, are shown in Table 1 in Section 4.1.
The results of the molecular dynamics simulations are shown in Figures 4–7 in Sections 4.2–4.5.
The figures show the pressure variation from the center of the slit to the wall, in the direction
perpendicular to the wall (Figure 4) and parallel to the wall (Figure 5). The next figures confirm,
as we shall see, that we can use a constant p̂ to define equilibrium, and that a small system scaling
law applies.

4.1. Pressure Component Normal to the Pore Wall

The normal component of the pressure tensor in simulation box 2 and bulk pressure in simulation
box 1 are shown in Table 1.

Table 1. The pressure tensor normal to the slit pore wall, PN , and the bulk pressure p f with varying
pore sizes a. Two total pressures are studied for various pore sizes.

Pore Size a/σ0 Normal Pressure, PN σ3
0 /ε0 Bulk Fluid Pressure, p f σ3

0 /ε0

5 6.178 ± 0.005 6.023 ± 0.005
6 6.017 ± 0.005 6.011 ± 0.005
9 6.014 ± 0.005 5.995 ± 0.006
12 6.011 ± 0.005 5.995 ± 0.003
15 6.029 ± 0.004 5.995 ± 0.004
21 6.011 ± 0.004 6.000 ± 0.003
27 5.997 ± 0.004 6.002 ± 0.003
35 5.998 ± 0.004 5.997 ± 0.003

5 0.2011 ± 0.0009 0.2002 ± 0.0002
6 0.1988 ± 0.0009 0.2005 ± 0.0002
9 0.2007 ± 0.0008 0.2000 ± 0.0002
12 0.2020 ± 0.0007 0.2002 ± 0.0002
15 0.1980 ± 0.0007 0.1997 ± 0.0002
21 0.1993 ± 0.0006 0.1997 ± 0.0001
27 0.2005 ± 0.0006 0.2000 ± 0.0001
35 0.2000 ± 0.0005 0.2001 ± 0.0001

The pressure tensor normal to the pore wall in simulation box 2 is according to Table 1 equal to
the bulk pressure in simulation box 1 within the accuracy of the simulation. The results show that this
assumption is correct. Therefore, the integral pressure can be understood as the average value of the
pressure tensor components tangential to the pore wall, p̂ = 〈PT〉.

4.2. Pressure Variation in the Direction Normal to the Pore Wall

The variation in the pressure component normal to the surface walls is shown for the liquid
(top) and the vapor phases (bottom) in Figure 4, for pore widths, 2a = 17.4σ0 (left) and 2a = 27.4σ0

(right), using αs f = 0.15 (repelling interactions). The horizontal straight line in all sub-figures is the
xx-component extrapolated to the walls. We know there is bulk fluid in the core, as the pressures in
V1 and V2 are the same, so this component is equal to the bulk pressure. For the other curves in the
figure, the tangential components of the pressures (the yy- and zz-components) fall on top of each
other. The distances 2a, b and c between the 4 dashed lines and the pore wall (grey) in the figure
represent three fluid volumes, of increasing size (V1, V2 and Vtot). These are the core volume (width c,
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volume V1), the core plus layer 1 (width b, volume V2) and the whole volume (width 2a, volume Vtot).
The distance 2a is the width of the channel.

Figure 4. Pressure variation of the three pressure components normal to the surface shown for (a) the
liquid phase with pore width 17.4σ0, (b) the vapor phase with pore width 17.4σ0, (c) the liquid phase
with pore width 27.4σ0 and (d) the vapor phase with pore width 27.4σ0, for αs f = 0.15. The normal
component of the pressure, P′

xx, is extrapolated from the center of the slit pore.

In the liquid phase (top), the tangential pressure component becomes negative close to the surface.
This variation was used to compute the surface tension between solid and liquid from Equation (18).
The value was found, within the accuracy of the calculation, to be independent of the distance between
the two surface walls, see Table 2.

For the vapor phase, there is no dip in the pressure tensor into the negative regime. In the vapor,
not only the extrapolated normal pressure component, P′

xx, but also the two tangential components,
Pyy and Pzz, are constant and independent of the distance between the two surfaces. Therefore,
the surface tension between the vapor and the wall is negligible.

The pressure in the pore core depends on the distance between the surface walls, i.e., it is larger
in the pore with a smaller distance (left) than in the one with a larger distance (right). The bulk fluid
pressures are related to the curvature of the liquid-vapor meniscus by Young–Laplace’s law, which
depends on the slit pore width 2a.

4.3. Pressure Variation along the Pore

The pressure tensor components were computed for three volumes of increasing size (V1, V2 and
Vtot) using the growing-core methodology. V1 and V2 are subvolumes in the center of the REVs and Vtot

is the volume covering the whole REV, i.e., Vtot = Vl = Vv (see Figures 1 and 3). In Figure 5, the pressure
components are plotted as a function of the z-direction. The z-direction is parallel to the pore wall and
passes through the vapor and the liquid droplet.

The volumes V1 and V2 contain bulk fluid, and are not influenced by the pore wall. The pressure
components of the two volumes in the center of the box are equal. It was shown (Table 1) that the
pressure was that of a bulk fluid in equilibrium with the pore. Therefore, the liquid bulk pressure is pl .
The pressures are equal to the vapor bulk pressure, pv, on both sides of the liquid droplet.

The volume Vtot includes the fluid and its interface with the pore wall. The pressure component
normal to the fluid wall is still equal to the fluid pressure, Pxx = p f . The pressure components
tangential to the fluid wall in the bulk liquid and bulk vapor, are equal to the integral pressure,
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p̂ = 〈PT〉. The integral pressure is the same in the liquid and vapor phases, in agreement with
Equation (20).

Figure 5. Pressure components (a) Pxx, (b) Pyy and (c) Pzz, as a function of the z- direction for three
regions defined using the growing-core methodology. The liquid droplet is in the center of the box,
from z = 30σ0 to z = 75σ0. There is a vapor phase on both sides of the liquid droplet.

4.4. Pressure Differences Across the Liquid-Vapor Interface

Figure 6 (left) shows the difference between the normal components of the bulk pressures in the
liquid and vapor. The pressure difference is shown as a function of the inverse half channel width,
a, for three values of the interaction parameter α, all values representing wall-fluid repulsive forces.
Figure 6 (right) shows the difference between the liquid and vapor for the tangential components
of the pressures, i.e., the integral pressure p̂ (dashed lines) and the bulk pressure = p f (solid lines).
Results are shown as a function of the inverse half channel width between the two pore walls, 1/a,
and three fluid–solid interactions parameters α. These plots allow us to test Equations (10) and (12).

We first observe that the integral pressure differences for the two fluids are zero, meaning that the
integral pressure is constant along the pore, see Figure 6 right bottom. The results support Equation (12).
In the bulk phases, the tangential and normal components are the same. This confirms the soundness
of the calculation procedures.
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Figure 6. Difference between (a) the normal components of the pressure of the bulk liquid and vapor
and (b) the difference in the tangential component of the pressure of the bulk liquid and vapor, for three
different solid-fluid interactions (α) plotted as a function of the inverse half pore width. The bulk
pressure, p f and the integral pressure are represented by solid and dashed lines, respectively.

Both figures show that the difference in bulk pressure components depends on the distance
between the two pore walls and the interaction parameter α. This is a consequence of a corresponding
decrease of the liquid-vapor curvature. The uncertainties in the results, did not allow a determination
of θ. We have therefore not computed the liquid-vapor surface tension, to confirm directly the
law Young–Laplace. However, results of the two REVs combined, imply the validity of this law.
The liquid–solid and vapor–solid surface tensions, computed with Equation (18), are given in Table 2
for the three α-values. The surface tension changes slightly with α.

Within the accuracy of the calculation, it was possible to estimate the slope of the three data sets.
Lines to guide the eye were fitted through zero in the left-hand side figure, following Young–Laplace
or the scaling law. The values of the slopes were 0.35/0.31/0.29, for α= 0.05/0.15/0.25, respectively.
The slope is equal to γlv cos θ which is approximately equal to γls since γvs ≈ 0 (see Equation (14) and
Table 2).

The slopes depended on the interaction parameter α. The value increased for decreasing values of
α. This is expected: The more repelling the surface is, the higher is the surface tension. The slopes are
in agreement with the liquid-solid surface tensions given in Table 2.

Table 2. Surface tensions for the liquid/solid and vapor/solid interfaces. Values are presented for three
interaction parameters α in the Lennard-Jones potential used in the computations. The surface tensions
were computed via the excess of the tangential pressure tensor (see Equation (18)).

α γls γvs

0.05 0.36 ± 0.02 0.0067 ± 0.0026
0.15 0.33 ± 0.01 0.005 ± 0.0035
0.25 0.31 ± 0.01 0.004 ± 0.0045

4.5. The Small System Scaling Law and the Subdivison Potential

Following the definition of Hill, the difference between the differential pressure, p, and the integral
pressure, p̂, was given by Equation (16), or ε/V = γ f s/(3a). The relation is an example of a small
system scaling law, cf. Equation (6).
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To investigate this further, the differential pressure, p, of the liquid REV minus the integral
pressure p̂ of the same was plotted in Figure 7 as a function of the inverse half channel width for
α = 0.15. The difference between p and p̂ was proportional to 1/a, and the slope was as predicted by
the liquid/solid surface tension from Table 2 divided by the half channel width, a, and a factor of 3.
The line goes through zero, when 1/a becomes zero. This is the thermodynamic limit value.

Figure 7. Difference between p and p̂ for the liquid REV2 as a function of the inverse half channel
width for α = 0.15..

Erdos et al. [10] reported slopes for cylinder pores in addition to slit pores. The ratio of slopes
between slit and cylinder pore was 0.52–0.58. From Equations (16) and (17), we obtain the ratio 0.50,
when the surface tension is constant. The surface tension is a function of the interaction parameter,
as we have seen. The surface tension may also depend on curvature. It follows that results from two
pores with different geometries, having the same α, and a surface tension which is independent of
curvature, will fall on top of each other.

The scaling law, that relate the integral and differential pressure of a REV, offer a new procedure
for calculation of surface tensions. This defined dependence on the inverse characteristic length, may
help distinguish between various other types of dependencies (curvature).

5. Conclusions

In this work we have confirmed, using molecular dynamics simulations, that the integral pressure
in a nano-confined single fluid in two phases is constant along a pore. This supports and extends
earlier investigations of Galteland et al. [18] for a single fluid between spheres arranged in a fcc lattice.
The results imply, that Young’s and Young–Laplace equations apply, equations which have been
validated experimentally numerous times. The integral pressure in mechanical equilibrium can be
understood as the average tangential component of the pressure. It is this component that is constant
through a pore at equilibrium. The differential pressure at mechanical equilibrium can be understood
as the average of the trace of the mechanical pressure tensor divided by 3.

The integral pressure, introduced by Hill, is relevant for descriptions of nano-pores. Using this,
we have developed a small system scaling law for nano-pores. Equation (6) is valid for a slit pore
and a cylindrical pore. The findings allowed us to speculate on wider applications of the scaling law.
One may imagine using the law for more complex geometries, where higher order terms are relevant
(line tension contributions). Once the subdivision potential is known, other thermodynamic quantities,

60



Nanomaterials 2020, 10, 608

like the enthalpy-hat, can also be computed for the confined system [33]. This opens up new ways to
study confined systems.
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Appendix A

In an isotropic system, the differential pressure p is normally defined by the trace of the pressure
tensor [34]:

p =
Pxx + Pyy + Pzz

3
(A1)

where Pii is the pressure component in the direction ii. Also the integral pressure can be understood in
terms of these pressure components. The integral pressure, p̂, in the present slit pore was expressed by
Equation (20):

p̂ =
1
2a

∫ a

−a
PTdx = 〈PT〉 =

Pyy + Pzz

2
(A2)

where Pyy and Pzz are the pressure components in tangential direction, and x is the direction normal to
the surface. The difference between p and p̂ can then be written as

p − p̂ =
Pxx + Pyy + Pzz

3
− Pyy + Pzz

2
(A3)

which results in

p − p̂ =
Pxx

3
− Pyy + Pzz

6
(A4)

By using the definition for the tangential pressure from Equation (A2), we obtain

p − p̂ =
Pxx

3
− 〈PT〉

3
(A5)

The normal pressure is equal to the tangential pressure in the thermodynamic limit (the bulk
fluid). For the bulk fluid;

Pxx = 〈PT〉 = p f (A6)

These relations mean that there is no difference between p and p̂.
With the assumption used in Equation (A2), Pxx, is constant in the direction perpendicular to the

pore surface, and
Pxx = p f (A7)

also away from the thermodynamic limit. By combining Equation (A2) with the definition of p̂,
Equation (11), we obtain

〈PT〉 = p f − γ f s

a
(A8)
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By introducing Equations (A7) and (A8) into Equation (A5), we obtain

p − p̂ =
p f

3
− p f

3
+

γ f s

3a
(A9)

which is

p − p̂ =
γ f s

3a
(A10)

The difference between the differential pressure p and the integral pressure p̂ in this equation is
the same as the difference in Equation (16), which was obtained using Hills formalism.
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Abstract: We have described for the first time the thermodynamic state of a highly confined single-
phase and single-component fluid in a slit pore using Hill’s thermodynamics of small systems. Hill’s
theory has been named nanothermodynamics. We started by constructing an ensemble of slit pores
for controlled temperature, volume, surface area, and chemical potential. We have presented the
integral and differential properties according to Hill, and used them to define the disjoining pressure
on the new basis. We identified all thermodynamic pressures by their mechanical counterparts in
a consistent manner, and have given evidence that the identification holds true using molecular
simulations. We computed the entropy and energy densities, and found in agreement with the
literature, that the structures at the wall are of an energetic, not entropic nature. We have shown that
the subdivision potential is unequal to zero for small wall surface areas. We have showed how Hill’s
method can be used to find new Maxwell relations of a confined fluid, in addition to a scaling relation,
which applies when the walls are far enough apart. By this expansion of nanothermodynamics,
we have set the stage for further developments of the thermodynamics of confined fluids, a field that
is central in nanotechnology.

Keywords: Hill’s thermodynamics of small systems; porous media; integral pressure; molecular
simulation

1. Introduction

The thermodynamic state of a fluid in confinement is important for the understand-
ing of adsorption to walls, chemical reactions, film formation and transport in porous
media [1–6]. The molecular structuring at the walls and the forces between particles and
walls are central. The change in thermodynamic properties upon confinement is substantial.
This has been known for a long time [1,7]. Derjaguin considered the measurable force that
attracts or repels two walls that are close together, and defined from this the disjoining
pressure [7]. The disjoining pressure has also been called the solvation pressure [1]. When
the walls are far apart, the disjoining pressure vanishes. It is not well known, however,
how size and shape, as variables, affect the disjoining pressure or other properties of the
confined fluid.

Confinement is considered to be important, for instance, in the context of CO2 separa-
tion and sequestration by metal-organic frameworks [2] or for adsorption in zeolites [3].
The disjoining pressure is of interest when studying aggregation of colloidal particles, sus-
pended or adsorbed [4–6]. It is likely to be important also for film flow on the macroscale [8].

More knowledge of confined fluids on the nanoscale is therefore needed. It may,
for instance, help us solve the well-known up-scaling problem in porous media science [9].
The central problem is to understand how to integrate properties on the pore scale to the
macroscale where Darcy’s law applies. In order to account for shape and size effects, it
was recently proposed to use the four Minkowski functionals [10–12]. This simplifies the
description of a representative elementary volume (REV). Another procedure using the
grand potential for average variables in the REV was also proposed [13,14].
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In this work, we want to further examine this procedure [13,14], by looking for a
way to describe the confined fluid in a pore. We are looking for a way to deal with size-
and shape-dependent variables in a systematic and general manner. Two thermodynamic
approaches are common. The approach following Gibbs is most popular [15–19]. However,
the method of Hill may offer an attractive alternative [20–25], partly because it may provide
an independent check on Gibbs procedure, but also because general geometric scaling
relations are obtainable from Hill’s method. We will see that this is also the case in the
present study.

We will pursue the method of Hill. This starts with the observation that a small system
has surface energy comparable to its bulk energy. A consequence is that the properties are
not Euler homogeneous. Hill proposed to deal with such systems in an original manner [26].
His idea was to introduce an ensemble of replicas of the small systems, on which standard
thermodynamics could be applied. Hill’s method has not gained much attention, in spite
of a renewed effort to spur interests [27,28].

The long-range aim of this work is to contribute to the effort of finding variables that
characterize the confined fluid, for instance in a REV. The grand potential offers one option
to describe the pressure and other variables [13,14]. We will pursue this route and study a
single-phase and single-component fluid in a slit pore using Hill’s method. The so-called
integral and differential pressures introduced by Hill are central. Hill did not consider the
disjoining pressure, however, it is a small system property and we will see that this concept
has benefited from insights of nanothermodynamics. The purpose of this paper is to clarify
the use of Hill’s nanothermodynamics, by applying the method to a fluid in a slit pore
with walls of large surface areas. This is a well-studied case in the literature [1,29], and is
well suited to bring out new results on the confined state, the disjoining pressure and other
properties. Grand canonical Monte Carlo and molecular dynamics simulation techniques
are well suited to investigate thermodynamic relations. We will use these tools to simulate
a single-phase fluid in a slit pore in the grand canonical ensemble. A particular advantage
of this technique is that the simulations offer a mechanical picture of the system.

Solid–fluid and fluid–fluid interactions are considered here, but not solid–solid inter-
actions. The solid–solid interactions will have a large effect on the thermodynamic state of
the system at very small slit pore heights. We do not consider quantum effects that follow
from system smallness in this work. We will consider slit pores of height h/λB = 6 to 71,
where λB is the thermal de Broglie wavelength.

Section 2.1 introduces the reader to Hill’s nanothermodynamics. We show in Section 2.2
how this theory can be used to define size- and shape-dependent properties, and new
Maxwell relations that follow from these. A definition of the disjoining pressure follows
naturally in Section 2.3. In order to be able to verify relations with molecular simulations
as a tool, we need to identify the integral pressures and surface tension in terms of the
mechanical pressure tensor components. This is done in Section 2.4. In Section 3 we
describe the molecular simulations.

We proceed in Section 4 to investigate relations in the theory, and illustrate them
with numerical results. We compute the local mechanical and thermodynamic variables
according to Hill; i.e., the integral and differential pressures, and the integral and differential
surface tensions. The grand potential, or the replica energy, is equal to minus the integral
pressure times the volume. The set of thermodynamic variables of the nanothermodynamic
framework, in terms of mechanical properties, is found to be self-consistent. We offer
concluding remarks in Section 5.

2. Theory

2.1. Hill’s Nanothermodynamics

Consider an ensemble of N slit pores, where each slit pore is filled with a single-phase
and single-component fluid. The slit pores do not interact with each other. The j-th slit pore
has two parallel plane walls of area Ωj, separated by a distance hj. The ensemble of slit
pores has the total internal energy Ut, total entropy St, total volume Vt = ∑N

j=1 hjΩj, total
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surface area 2Ωt = 2 ∑N
j=1 Ωj, and total number of particles N. The factor of two in the total

surface area arises because there are two fluid–solid surfaces of equal area per slit pore.
By construction, the ensemble variables Ut, St, Vt, Ωt, N, and N are Euler homogeneous
functions of the first order in the number N of slit pores. The total differential of the total
internal energy is

dUt = TdSt − p⊥dVt + 2γdΩt + μdNt + εdN . (1)

This type of equation for the total internal energy we call the Hill-Gibbs equation [25].
The last term was added by Hill. The partial derivatives of the total internal energy
define the temperature T, the normal pressure p⊥, the surface tension γ and the chemical
potential μ (

∂Ut

∂St

)
Vt ,Ωt ,Nt ,N

= T,
(

∂Ut

∂Vt

)
St ,Ωt ,Nt ,N

= −p⊥,(
∂Ut

∂Ωt

)
St ,Vt ,Nt ,N

= 2γ,
(

∂Ut

∂Nt

)
St ,Vt ,Ωt ,N

= μ.
(2)

The control variables in subscripts are kept constant while taking the derivatives. The vol-
ume derivative is taken while keeping the total surface area constant, which implies that the
volume is changed by changing the distance between the surfaces hj ≡ Vj/Ωj. The surface
derivative is taken while keeping the volume constant, which implies that both the pore
heights and surface areas are changed in such a way that the change in the total volume
is zero.

The new thermodynamic variable ε is the subdivision potential. It is(
∂Ut

∂N
)

St ,Vt ,Ωt ,Nt

= ε. (3)

The subdivision potential is defined here as the increase in the total internal energy as the
number of slit pores N increases while keeping St, Vt, Ωt, and Nt constant. This definition
is different from the definition in a previous article by us [23], where only the entropy,
volume and number of particles were kept constant and not the surface area. This led to a
different expression for the subdivision potential.

The subdivision potential is the work done on the system when adding a new slit
pore while keeping the other control variables constant. The subdivision potential may be
positive or negative, depending on whether work is needed or gained by adding new slit
pore replicas.

We are aiming to describe the disjoining pressure, see Section 2.3, of an open slit pore
when the volume, surface area, temperature and chemical potential are control variables.
We will change to this ensemble. This ensemble is useful for describing experiments and
simulations. We use the average volume per slit pore V = Vt/N and the average surface
area per slit pore 2Ω = 2Ωt/N , rather than the total volume Vt and the total surface area
2Ωt. In order to obtain an appropriate Hill-Gibbs equation for this case, we substitute the
total volume with the average volume Vt = VN and total surface area with the average
surface area 2Ωt = 2ΩN . The total differentials of the volume and surface area are

d(VN ) = NdV + VdN and d(ΩN ) = NdΩ + ΩdN . (4)

By introducing this into the Hill–Gibbs equation, see Equation (1), we obtain

dUt = TdSt − p⊥NdV + 2γNdΩ + μdNt + (ε − p⊥V + 2γΩ)dN . (5)

The parenthesis define the replica energy

X(T, V, Ω, μ) ≡ ε − p⊥V + 2γΩ. (6)
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The subdivision potential ε, normal pressure p⊥, and surface tension γ depend on the
control variable set T, V, Ω, and μ. The replica energy density will be used to define the
disjoining pressure.

The grand partition function covers all microstates available to the slit pore. In order
to calculate this partition function one chooses a volume V and a surface area Ω. Both can
be varied independently. For large h and Ω only a change in the volume V = hΩ, and not
in h and Ω separately, matters. For a small volume, it is necessary to use the volume V and
the surface area Ω as independent variables. This is because the same volume change due
to a change of the pore height h = V/Ω or due to a change of the surface area Ω produces
different changes in the partition function, and therefore in the thermodynamic variables.

The replica energy was identified by Hill as the grand potential, here equal to minus
the integral pressure times the volume [26],

X(T, V, Ω, μ) = − p̂V = − p̂⊥V + 2γ̂Ω. (7)

In the last equality, we have chosen to identify the integral pressure as the integral normal
pressure times the volume minus the integral surface tension times the surface area. We
will refer to p̂⊥, γ̂ and p̂ as the integral normal pressure, the integral surface tension and
the integral pressure, respectively, while p⊥ and γ are the differential normal pressure and
the differential surface tension, respectively. The names integral and differential pressure
were coined by Hill to reflect that the differential pressure involves the differential of the
integral pressure. We have chosen a control variable set with volume and surface area,
such that we do not have a differential pressure but a differential normal pressure p⊥ and
differential surface tension γ in its place.

From Equations (6) and (7) it follows that the subdivision potential is

ε = (p⊥ − p̂⊥)V − 2(γ − γ̂)Ω. (8)

The subdivision potential ε indicates that the integral normal pressure and the integral
surface tension may be different from the corresponding differential variables.

2.2. Maxwell Relations for a Slit Pore

Using that the total internal energy is Euler homogeneous of the first order in the
number of slit pores, see Equation (5), we integrate it at constant T, V, μ and Ω

Ut = TSt + μNt + XN . (9)

We introduce the average internal energy, entropy and number of particles per slit pore

Ut = UN , St = SN , and Nt = NN . (10)

By introducing the average properties into the total internal energy in Equation (9) we
obtain the internal energy per slit pore

U = TS + μN + (ε − p⊥V + 2γΩ) = TS + μN + X. (11)

Substituting the average properties per slit pore in Equation (10) into the corresponding
Hill-Gibbs equation, see Equation (5), and using the internal energy in Equation (11),
we obtain the total differential of the internal energy

dU = TdS − p⊥dV + 2γdΩ + μdN. (12)

By differentiating the internal energy in Equation (11) and using the total differential of the
internal energy in Equation (12), we obtain the total differential of the replica energy

dX = −d( p̂⊥V − 2γ̂Ω) = −d( p̂V) = −SdT − p⊥dV + 2γdΩ − Ndμ. (13)
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This equation was termed the Hill-Gibbs-Duhem Equation [25], because it reduces to the
Gibbs-Duhem equation for a large system. It follows that the partial derivatives of the
grand potential is

(
∂( p̂V)

∂T

)
V,Ω,μ

= −
(

∂X
∂T

)
V,Ω,μ

= S,(
∂( p̂V)

∂V

)
T,Ω,μ

= −
(

∂X
∂V

)
T,Ω,μ

= p⊥,(
∂( p̂V)

∂Ω

)
T,V,μ

= −
(

∂X
∂Ω

)
T,V,μ

= −2γ,(
∂( p̂V)

∂μ

)
T,V,Ω

= −
(

∂X
∂μ

)
T,V,Ω

= N.

(14)

Rather than the names replica energy or grand potential, we name from now X = − p̂V by
minus the integral pressure times the volume. In Section 2.4 we will define the integral
pressure in terms of the average tangential mechanical pressure which can be calculated
from molecular simulations. In the simulations, we consider surface areas Ω much larger
than the diameter of the fluid particles and heights h = V/Ω comparable to the diameter
of the fluid particles. This implies that p̂, p̂⊥, γ̂, u ≡ U/V, s ≡ S/V, p⊥, γ, and ρ ≡ N/V
do not depend on Ω, but the variables will depend on the height h and therefore on the
volume V.

The volume and surface derivative can be rewritten in terms of derivatives of the slit
pore height and surface area. These derivatives are needed to calculate the differential
normal pressure and differential surface tension. The differential normal pressure is

p⊥ =

(
∂( p̂V)

∂V

)
T,Ω,μ

= p̂ + V
(

∂ p̂
∂V

)
T,Ω,μ

= p̂ + h
(

∂ p̂
∂h

)
T,Ω,μ

. (15)

The differential surface tension is

γ = −V
2

(
∂ p̂
∂Ω

)
T,V,μ

=
h2

2

(
∂ p̂
∂h

)
T,Ω,μ

− V
2

(
∂ p̂
∂Ω

)
T,h,μ

. (16)

Combining the equations for the differential normal pressure and surface tension it follows
that the integral pressure is

p̂ = p⊥ − 2
h

γ − Ω
(

∂ p̂
∂Ω

)
T,μ,h

. (17)

The last term is the equal to minus the subdivision potential divided by volume, see
Equations (7) and (8). The subdivision potential is

ε = ΩV
(

∂ p̂
∂Ω

)
T,μ,h

. (18)

This implies that in the grand canonical ensemble with T, V, Ω, μ as control variables,
the thermodynamic description of the slit pore with a small height is the same as for the
slit pore with a large height. However, it changes when the integral pressure depends on
the surface area. This may not be the case for any other set of control variables. In general,
the properties of a small system (confined fluid) depend on the set of control variables.

In this work, we deal with large surface areas, such that the integral pressure does
not depend on it. As a consequence the subdivision potential is zero. We will find that
the integral and differential normal pressure are equal. Using that ε = 0, it follows
that the integral and differential surface tensions are also equal for a large surface area,
see Equation (8),

69



Nanomaterials 2021, 11, 165

p̂⊥ = p⊥ and γ̂ = γ. (19)

We will investigate the first identity for large surface areas using molecular simulations.
From Equation (13) we obtain the following Maxwell relations of the differential

surface tension,

(
∂γ

∂T

)
V,Ω,μ

= −1
2

(
∂S
∂Ω

)
T,μ,V

=
h2

2

(
∂s
∂h

)
T,μ,Ω

,(
∂γ

∂μ

)
T,V,Ω

= −1
2

(
∂N
∂Ω

)
T,μ,V

=
h2

2

(
∂ρ

∂h

)
T,μ,Ω

,(
∂γ

∂V

)
T,Ω,μ

= −1
2

(
∂p⊥
∂Ω

)
T,μ,V

=
h

2Ω

(
∂p⊥
∂h

)
T,μ,Ω

.

(20)

In the second identity, we have used that the entropy density, fluid number density and
differential normal pressure are independent of the surface area for large surface areas.
Other Maxwell relations are possible, see the Hill–Gibbs–Duhem Equation (13). The last
equality can be written as (

∂γ

∂h

)
T,μ

=
h
2

(
∂p⊥
∂h

)
T,μ,Ω

. (21)

The important implication of this expression is that the constant nature of one variable
implies the constant nature of the other for large pore heights. With the mechanical
description of the integral properties given in Section 2.4 the consistency of all the above
thermodynamic relations can be tested.

2.3. The Disjoining Pressure

We define the excess replica energy as the replica energy of a slit pore of height h
minus the replica energy of the slit pore where the slit pore height approaches infinity,

Xex = X − lim
h→∞

X. (22)

We denote the thermodynamic variables where the slit pore height approaches infinity
with ∞ in superscript,

lim
h→∞

X = X∞. (23)

The excess replica energy can be written in terms of the excess integral pressure p̂ex, excess
integral normal pressure p̂ex

⊥ , and excess integral surface tensions γ̂ex

Xex = − p̂ex V = − p̂ex
⊥ V + 2γ̂exΩ. (24)

We define now the disjoining pressure as the excess normal pressure,

Π(h) ≡ p̂ex
⊥ ≡ p̂⊥ − p∞

⊥ . (25)

Other possible names are minus the excess replica density, or the excess grand poten-
tial density.

This definition of the disjoining pressure is different from the typical definition found
in the literature [7,29,30]. Typically the disjoining pressure is defined to be equal to what
we in this work call the excess differential normal pressure, where the excess is relative
to a bulk fluid. For large surface areas we will show with molecular simulations that
p̂⊥ = p⊥. We will furthermore show that the integral normal pressure, as the slit pore
height approaches infinite separation, equals the bulk fluid pressure p∞

⊥ = pb. This shows
that our choice is equivalent to the usual definition.
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2.4. A Mechanical Description of the Slit Pore

The thermodynamic description of integral and differential pressures and surface
tensions has its mechanical equivalent description in terms of components of the mechanical
pressure tensor. A recent discussion on this topic clarified the challenge of translating
the mechanical pressure tensor into a thermodynamic scalar variable in a meaningful
manner [31–33]. We will identify the integral normal pressure, integral surface tension,
and integral pressure in such a way that thermodynamic framework is self-consistent.
However, we do not claim that this is the only valid choice of thermodynamic pressures
and tensions in terms of the mechanical pressure tensor.

The mechanical pressure tensor of a heterogeneous system is ambiguously defined.
This has been known for a long time, at least since the work by Irving and Kirkwood
in the 1940s. It was shown by Schofield and Henderson [34] that the ambiguity is due
to the arbitrary choice of the integration contour Cij, which is needed to calculate the
configurational contribution to the pressure tensor. The local mechanical pressure tensor is
calculated in a subvolume Vl as a sum of the kinetic and the configurational contributions,

Pαβ(x) = Pk
αβ + Pc

αβ. (26)

Upper case P is used to denote mechanical pressure tensor components in order to dis-
tinguish them from the thermodynamic pressures, which are denoted by the lower case
p. The kinetic contribution is the ideal contribution to the mechanical pressure and is
calculated as

Pk
αβ =

1
Vl

〈
∑

i∈Vl

mivi,αvi,β

〉
. (27)

The sum with subscript i ∈ Vl represents a sum over all particles in the subvolume Vl .
The particle mass is mi and vi,α is the velocity in the α-direction. The solid walls do
not have a velocity and consequently do not directly contribute to the kinetic pressure.
The brackets 〈. . . 〉 represent ensemble average. The configurational contribution is the
non-ideal contribution to the mechanical pressure and is calculated as

Pc
αβ = − 1

2Vl

〈
N

∑
i=1

N

∑
j=1
j �=i

fij,α

∫
Cij∈Vl

dlβ

〉
. (28)

The sum represents a sum over all particle pairs. The α-component of the force vector
acting on particle i due to particle j is fij,α. The fluid–fluid and fluid–solid interactions
contribute to the configurational pressure, the solid–solid interaction is zero and does not
contribute to the pressure. The line integral is the β-component of the part of the contour
Cij contained in the subvolume Vl .

The contour Cij is the source of the ambiguity of the mechanical pressure tensor, it can
be any continuous line from the centers of particles i to j. The Harasima [35] and the
Irving–Kirkwood [36] contours are two common choices for Cij. The Harasima contour is
defined as two continuous line segments, a line from the center of particle i parallel to the
surface and a line normal to the surface to the center of particle j. The Irving–Kirkwood is
the straight line from particle i to j. For flat surfaces they are equal. However, for spherical
surfaces, the Harasima contour does not obey momentum balance [37]. There are cases
where the Harasima contour is more useful than the Irving–Kirkwood contour [38]. In this
work, we will use the equations by Ikeshoji et al. [39] with the Irving–Kirkwoood contour
to calculate the mechanical pressure tensor.

We will only consider surface areas Ω much larger in both directions than the fluid
particle diameter. This implies the mechanical pressure tensor does not depend on Ω.
It does, however, depend on the height h ≡ V/Ω and therefore on the volume V.
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Using the translational symmetry of the slit pore in the y- and z-direction, where the
x-direction is normal to the solid surface, the equilibrium mechanical pressure tensor in
the slit pore has the form

P(x; h) = P⊥(h)exex + P‖(x; h)(eyey + ezez), (29)

where ex, ey and ez are the unit vectors in the x-, y- and z-directions. The normal pressure
tensor component is equal to the xx-component, and tangential pressure tensor component
is the average of the yy- and zz-components,

P⊥(h) = Pxx and P‖(x, h) =
1
2
(

Pyy + Pzz
)
. (30)

Mechanical equilibrium requires that the tangential pressure is independent of the y- and
z-coordinates, but depends on the x-coordinate. The normal pressure is independent of all
spatial coordinates.

We identify the thermodynamic integral normal pressure in terms of the volume
integral of the normal mechanical pressure divided by the volume. However, since the
normal mechanical pressure and the area are constant everywhere, this simplifies to

p̂⊥(h) ≡ 1
h

∫ h

0
P⊥(h)x = P⊥(h). (31)

The integral normal pressure in a large pore is equal to the pressure in a bulk phase in
equilibrium with the pore. The difference in the integral normal pressure in a liquid and
vapor phase in a slit pore is described the Young–Laplace equation, while the integral
pressure is the same in both the liquid and vapor phase [23]. An alternative route to the
integral normal pressure is via the local fluid number density profile [40]

P⊥(h) =
∫ h

0
f f s(x)ρ(x, h)x, (32)

where f f s(x) is the fluid–solid force and ρ(x, h) is the local fluid number density. The fluid
density and fluid–solid forces are uniquely defined, and do not have the inherent problem
that the mechanical pressure tensor has. We can use this equation to validate our method
of calculating the integral normal pressure.

We identify further the integral surface tension as the integral of the normal minus
tangential pressure tensor components,

γ̂(h) ≡ 1
2

∫ h

0

(
P⊥(h)− P‖(x; h)

)
dx, (33)

where the factor half is due to the fact that there are two fluid–solid surfaces. It follows
from Equation (7) together with Equations (31) and (33) that the integral pressure is,

p̂(h) =
1
h

∫ h

0
P‖(x; h)dx. (34)

As shown by Harasima [35] and Schofield and Henderson [34] a sufficiently large volume
integral of the mechanical pressure tensor components does not depend on the choice
of the integral contour Cij. We have identified the integral normal pressure, integral
surface tension and integral pressure in terms of the mechanical pressure tensor. The local
mechanical pressure tensor has an inherent problem, specifically that the contour Cij can
be any continuous line from i to j. However, the thermodynamic variables do not have this
inherent problem. This is because we integrate the local mechanical pressure tensor across
the whole volume V. This volume integral includes all interactions.

The internal energy can be calculated as the sum of the kinetic and potential energy,

U = Ek + Ep. (35)
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By dividing the internal energy in Equation (11) by the volume we obtain the internal
energy density u = U/V. We also use the entropy density s = S/V, and fluid number
density ρ = N/V. By rearranging the equation we obtain the entropy density as

s =
1
T
(u + p̂ − μρ), (36)

where the internal energy density, integral pressure and fluid number density are known.
The volume, chemical potential and temperature are imposed on the system.

3. Simulation Details

The thermodynamic state of slit pores of varying heights h was investigated by us-
ing grand-canonical Monte Carlo (GCMC) [41] in combination with molecular dynamic
(MD) simulations with the Nosé–Hoover thermostat [42]. This produced the grand canon-
ical ensemble, i.e., constant chemical potential, temperature, volume and surface area.
The GCMC method inserted and deleted fluid particles to and from the simulation box
from an imaginary fluid particle reservoir at the same temperature and chemical potential.
This controlled the chemical potential of the fluid in the slit pore. The MD procedure
updated the positions and velocities of the fluid particles and controlled the temperature
with the Nosé–Hoover thermostat.

The simulations were carried out using LAMMPS [43]. The local mechanical pressure
tensor was calculated by post-processing the particle trajectories with in-house software
(available at D.O.I. 10.5281/zenodo.4405267). The chemical potential and temperature were
kept constant at μ∗ = 1 and T∗ = 2. The critical temperature of the Lennard–Jones/spline
fluid is T∗

c = 0.885 [44]. All units in this work are in reduced Lennard–Jones units, see
Table 1 for a definition.

Table 1. The reduced units are denoted with an asterisk in superscript, for example T∗. The variables
are reduced using the molecular diameter σ, potential well depth ε, fluid particle mass m and
Boltzmann constant kB.

Description Definition

Energy E∗ = E/ε
Entropy S∗ = S/kB

Temperature T∗ = TkB/ε
Distance x∗ = x/σ
Pressure p∗ = pσ3/ε

Chemical potential μ∗ = μ/ε

The simulation box was a rectangular cuboid of side lengths Lx, Ly = Lz. The side
lengths Ly = Lz were chosen such that the surface area was large. Large in this context
indicates large enough for p̂, p̂⊥, γ̂, p⊥, and γ to be independent of the surface area
Ω = LyLz. The simulation box size was decided such that the average number of fluid
particles was approximately 2 × 104. The simulation box was periodic in the y- and z-
directions, and non-periodic in the x-direction. This implies that the particles did not
interact across the simulation box boundary in the x-direction.

The fluid–fluid and fluid–solid interaction was modeled with the Lennard-Jones/spline
potential [44]. The fluid–fluid and fluid–solid interactions were equal. The potential energy
of a fluid–fluid or fluid–solid pair separated by a distance r was

uLJ/s(r) =

⎧⎪⎪⎨⎪⎪⎩
4ε
[(

σ
r
)12 − ( σ

r
)6
]

if r < rs

a(r − rc)2 + b(r − rc)3 if rs < r < rc

0 else,

(37)

where rs, a, b and rc were chosen such that the potential energy and the force were con-
tinuous at the inflection point r = rs and the cut-off r = rc. The solid walls were placed
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at the simulation box boundaries x = −Lx/2 and x = Lx/2. The distance between the
fluid and solids were r = |x f − Lx/2| and r = |x f + Lx/2|, where x f is the x-position of
the fluid particle.

The dividing surfaces of the fluid–solid surfaces were chosen to be at x = −Lx/2 and
x = Lx/2. The slit pore height was consequently determined to be h = Lx. Other choices
of the dividing surface are possible, for example, the Gibbs dividing surface or the surface
of tension. When Lx < 2rc the fluid particle can interact with both solid walls. See Figure 1
for an visualization of the simulation box for the case Lx = 4σ.

Figure 1. Visualization of the fluid particles in a slit pore of height Lx = 4σ, chemical potential μ∗ = 1,
and temperature T∗ = 2. The fluid particles are rendered in red, and their diameter is rendered at σ.
The solid is not rendered. The solid lines illustrates the edges of the simulation box. The simulation
was rendered with Open Visualization Tool (OVITO) [45].

The mechanical pressure tensor was calculated in thin rectangular cuboids, called
layers l, of side lengths Δx, Ly, Lz. The thickness of the layers was Δx = 0.005σ and the
number of layers was nl = h/Δx. The diagonal components of the mechanical pressure
tensor was calculated using Equations (27)–(29).

The kinetic energy was calculated as the sum of the kinetic energy for each fluid
particle and the potential energy was calculated as the sum of the potential energy of each
fluid–fluid and fluid–solid pairs,

Ek =
1
2

N

∑
i=1

mi(vi · vi) and Ep =
N

∑
i=1

N

∑
j>i

uLJ/s(rij). (38)

The sums of the kinetic and potential energies were used to calculate the internal energy
and entropy densities.

4. Results and Discussion

The results are presented in Figures 2–10 and discussed in that order before general
remarks are offered.

The normal mechanical pressure P⊥ is presented in Figure 2a. It does not depend on
the position x, but it depends strongly on the slit pore height h. The figure shows a straight
line of various lengths for each of the three heights, which reflect the slit pore height h.
The integral normal pressure was identified as this component, p̂⊥ = P⊥. We see that it
is always constant, as demanded by Equation (31). For slit pore heights h > 7σ we find
that the normal mechanical pressure is equal to the bulk pressure. At h = 2.04σ the normal
mechanical pressure is at a global maximum and at h = 2.59σ it has a local minimum for the
given temperature and chemical potential. The normal mechanical pressures divided by the
bulk pressure for the two cases are P⊥/pb = 2.5135 ± 0.0008 and P⊥/pb = 0.5539 ± 0.0002,
respectively. The global minimum, which is zero, is at h < 1.8σ when no fluid particles
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fit in the slit pore. This is because solid–solid interactions and quantum effects are not
considered in this work.

(a)( )

(b)( )

(c)
Figure 2. (a) Normal mechanical pressure, (b) tangential mechanical pressure, and (c) fluid number
density ρ as a function of th e x-direction for slit pore heights h = 2.04σ, 2.59σ, and 8σ.
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The tangential mechanical pressure P‖, illustrated in Figure 2b, depends in contrast on
the position x as well as on the slit pore height h. The integral pressure is the average of P‖,
see Equation (34). The tangential mechanical pressure follows the trend of the fluid number
density, compare Figures 2b,c. For pore sizes h > 7σ the tangential mechanical pressure
is constant and equal to the bulk pressure pb in the center of the pore. This indicates that
the pore is large enough to accommodate bulk liquid in the center. The fluid is highly
structured close to the fluid–solid surface [1]. As the slit pore height is decreased, fluid
structures on the two sides overlap. When regions of structured fluids overlap, repulsive
and attractive forces between the surfaces appear, and the disjoining pressure becomes
non-zero.

The fluid number density ρ = N/V is presented in Figure 3 as a function of the
slit pore height h. The bulk fluid number density ρb in equilibrium with the slit pore is
shown as a dashed line. The fluid number density converges to the bulk value as the slit
pore height approaches infinity. The volume V depends on the choice of the fluid–solid
dividing surfaces. We have chosen the dividing surfaces to be at x = −Lx/2 and x = Lx/2.
The choice of the dividing surface determines how rapidly the slit pore values converge to
the bulk values. A dividing surface closer to the fluid phase will reduce the volume and
consequently the slit pore values will converge faster to the bulk values. Other choices of
the dividing surface are possible.

Figure 3. Fluid number density ρ = N/V as a function of slit pore height h. The bulk fluid number
density is shown as a dashed line.

The entropy density is presented in Figure 4 as a function of the slit pore height h.
The entropy density is a monotonically increasing function of the height h. This confirms
the observation by Israelachvili [1] that the origin of the oscillations of the disjoining
pressure as a function of the height is not entropic. As a further confirmation of this
point, we find that the internal energy density oscillates with a period equal to the particle
diameter, see Figure 5. The oscillating forces or pressures are thus of energetic origin.
The bulk entropy and internal energy densities are shown as dashed lines. The entropy
and internal energy densities of the slit pore converge to the bulk values as the slit pore
height is increased.
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Figure 4. Entropy density s = S/V as a function of slit pore height h. See Equation (36). The dashed
line shows the entropy density of the bulk sb.

Figure 5. Internal energy density u = U/V as a function of slit pore height h. See Equation (35).
The dashed line shows the internal energy density of the bulk ub.

The integral pressure is equal to the volume average tangential mechanical pressure
p̂ = h−1

∫ h
0 P‖dx. It is of special interest because it is equal to minus the grand potential

divided by volume p̂ = −X/V, or the replica energy density. The grand potential is the
starting point for the definition of the average thermodynamic properties of the REV [13].
The integral pressure is presented in Figure 6 as a function of the slit pore height h. The in-
tegral pressure converges to the bulk pressure pb as the slit pore height approaches infinity,
as expected. The bulk pressure is shown as a dashed line.

In previous works [13,14,21] we argued that the gradient of the integral pressure
is the driving force for mass flux. In another work [23] we found the integral pressure
of a two-phase system in a slit pore to be equal in the liquid and vapor in equilibrium.
The identification of the integral pressure in this work is consistent with this interpretation.
The gradient of the integral pressure is the driving force of the mass flux. For fluid flows
tangential to the slit pore surfaces it is the gradient in the tangential mechanical pressure
tensor component that gives the driving force when the system is out of equilibrium. In this
work we identify the integral pressure as the average of the tangential mechanical pressure
tensor components.

77



Nanomaterials 2021, 11, 165

As stated in Section 2.2, the integral and differential normal pressures and integral
and differential surface tensions are expected to be equal when the surface area is large.
If this is correct, the integral pressure can be computed as

p̂(h) =
1
h

∫ h

h0

p̂⊥h′ =
∫ h

h0

2γ̂

h′2
h′. (39)

The lower integration limit is h0 = 1.8σ, at which point the integral pressure is in good
approximation zero. The integral pressure computed from Equation (39) is shown in Figure
6. The curves are identical. This implies that the integral and differential normal pressures
are equal. As we have already shown that the subdivision potential is zero ε = 0 for large
surface areas with this set of control variables, it follows that the integral and differential
surface tensions are also equal. We will from now on refer to the integral normal pressure
and integral surface tensions as the normal pressure and surface tension.

Figure 6. Integral pressure p̂ as a function of slit pore height h. The integral pressure is computed as
the average tangential mechanical pressure, see Equation (34), and from the normal pressure and
surface tension, see Equation (39).

The normal pressure was identified as the normal mechanical pressure p⊥ = P⊥ in
Equation (31). It is presented in Figure 7 as a function of the slit pore height h. The normal
pressure was also calculated from the local fluid density and the fluid–solid force using
Equation (32). The two methods of calculating the normal pressure agree, which indicates
that we have calculated the mechanical pressure tensor correctly.

The normal pressure oscillates with a period equal to the fluid particle diameter
at small heights h. The oscillations decay as the height h increases. Such oscillations
have been observed in experiments and are well known, see for example Israelachvili [1].
The oscillations are caused by the structuring of the fluid particles between the surfaces,
and by the fact that the fluid particles all have the same diameter. As the height is increased
above h > 7σ the oscillations vanish and the normal pressure is constant and equal to
the bulk pressure. The bulk pressure is shown as a dashed line in the figure. At heights
h > 7σ the fluid structuring near the walls do not overlap. At lower densities, smaller
oscillations are expected with a faster decay. The normal pressure shows a similar trend to
previous works [15,16,40]. At very small heights, the solid–solid interaction will dominate
and completely overshadow the fluid-fluid and fluid–solid interactions presented here.
We have not included any solid–solid interaction in this work, and as a consequence the
normal pressure approaches zero because there is no room for any fluid particles to enter
the slit pore.
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Figure 7. Normal pressure p⊥ = P⊥ as a function of slit pore height h. It is computed as the normal
mechanical pressure tensor component, see Equation (31), and as the integral of the fluid–solid force
times the local fluid density, see Equation (32).

When p⊥ = p̂⊥ and ε = 0, it follows from Equation (8) that the integral and differential
surface tensions are equal γ = γ̂. The surface tension as a function of the slit pore height
is presented in Figure 8, see Equation (33). The surface tension at infinite separation γ∞

is computed as the average surface tension of the slit pore, with height h > 10σ, at which
point the surface tension is independent of h.

Figure 8. Surface tension γ as a function of slit pore height h, see Equation (33). The dashed line
shows the surface tension at infinite separation γ∞.

The disjoining pressure Π was computed from Equation (25), and is shown as a func-
tion of the slit pore height h in Figure 9. The disjoining pressure was here defined to be
equal to the integral normal pressure minus the normal pressure at infinite separation.
Because the integral and the differential normal pressures are the same and because the
normal pressure at infinite separation is equal to the bulk pressure, in this case, the defini-
tion contain the commonly used definition of the disjoining pressure [7,29]. The normal
pressure is constant for slit pore heights h > 7σ. Consequently, the normal pressure at
infinite separation can be calculated as the normal pressure when h > 7σ. The normal pres-
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sure at infinite separation is equal to the pressure in a bulk fluid with the same temperature
and chemical potential.

For the present case, we can claim that our definition of the disjoining pressure is
equivalent to the common definition. Our definition is general, as it also covers the cases
where the integral and the differential normal pressures are unequal. Examples where this
is the case are given below.

Figure 10 shows how the normal pressure minus the integral pressure scales with
inverse slit pore height. It is equal to the scaling law presented in a previous work [23].
The slope of this ideal curve is equal to two times the surface tension. When the inverse slit
pore height approaches zero, i.e., when the walls are far apart, the normal pressure and
integral pressures are equal as predicted. For pores that are so small that no bulk fluid can
form in the center, the structuring at the walls starts to overlap, and a fluctuating difference
is seen in the difference of the normal and integral pressures. In the region of the straight
line, we have a scaling law, that relates states of different heights. At heights smaller than
approximately h < 5σ the scaling law breaks down, the difference of the two pressures
starts to oscillate. There are positive and negative deviations from the law.

Figure 9. Disjoining pressure as a function the slit pore height h, see Equation (25).

Figure 10. The scaling of normal pressure minus integral pressure as a function of the inverse slit
pore height h.

In our earlier work [23], we studied liquid-vapor coexistence in a slit pore. In that
work the surface area was not a control variable, and as a consequence the subdivision
potential was found to be equal to two times the surface tension divided by the slit pore
height, see Figure 10. Another reasonable set of control variables is the height h instead of
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the volume V. For a control variable set consisting of temperature, height, surface area and
chemical potential, the differential normal pressure is equal to

p⊥ =
1
Ω

(
∂( p̂V)

∂h

)
T,Ω,μ

= p̂ + h
(

∂ p̂
∂h

)
T,Ω,μ

. (40)

The differential surface tensions is

γ = −1
2

(
∂( p̂V)

∂Ω

)
T,μ,h

= − p̂h
2

− V
2

(
∂ p̂
∂Ω

)
T,μ,h

. (41)

For this set of control variables, the height h is kept constant instead of the volume V.
The subdivision potential is accordingly

ε = − p̂V + p⊥V + 2γΩ

= p̂V + hV
(

∂ p̂
∂h

)
T,Ω,μ

+ ΩV
(

∂ p̂
∂Ω

)
T,h,μ

.
(42)

These relations also help us characterize the smallness of the slit pore with the large
walls. The subdivision potential, introduced by Hill as a measure of smallness, deviates
from zero in the last relation, also when the integral pressure does not depend on the
size of the area, with height h and surface area Ω as control variables. A dependency
on the area is relevant when adsorption takes place on small spheres [24]. A slit pore
with large walls may be expected to be small for small heights h, since the confined fluid
is not bulk-like. However, we have seen that when we use volume V and surface area
Ω as control variables, the subdivision potential is zero for large surface areas. A zero
subdivision potential means that the system also can be described perfectly using regular
thermodynamics [18]. It is nevertheless meaningful to define a non-zero integral pressure,
because the integral pressure enters the grand potential. It, therefore, determines the
thermodynamic properties of a REV. Away from equilibrium, it will create a driving force.

The grand potential or minus the integral pressure times the volume are equal to the
replica energy. The replica energy is not zero in the present case. Clearly, we have here an
example where smallness is brought out in Hill’s terms through the replica potential.

5. Conclusions

We have developed a nanothermodynamic description based on the ideas of Hill to
describe single-phase and single-component fluids in slit pores in a new manner. As en-
vironmental control variables we chose the chemical potential, temperature, volume and
surface area. We have seen that the outcome varies with the set chosen, but the procedure
can be used for complex geometries and different sets.

Following Hill, we introduced the subdivision potential. It is non-zero only when
the integral pressure depends on the surface area Ω. For large surface areas we have
shown that the subdivision potential is zero, and that p⊥ = p̂⊥ and γ = γ̂. In this
sense, we have found that nanothermodynamics is equivalent to the usual thermodynamic
description for all heights. The replica energy, and therefore the integral pressure, were
shown to be non-zero. This allowed us to identify a scaling law, which confirms earlier
results [22,23]. By choosing height h rather than volume V among the control variables, a
non-zero subdivision potential appears.

We have identified the thermodynamic properties by their mechanical counterparts in
a consistent manner. The integral pressure, which is equal to minus the grand potential
divided by volume, can be understood as the average tangential mechanical pressure.
The normal pressure is the normal mechanical pressure, and the surface tension is the
integral of the normal minus the tangential mechanical pressure. The entropy and in-
ternal energy densities vary with the slit pore height, confirming the observations of
Israelachvili [1]. The entropy density increases monotonically with increasing height, while
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the energy density oscillates. This confirms that the disjoining pressure is not of entropic
origin, it is of energetic origin [1].

By these investigations of the nanothermodynamic theory and the subsequent simu-
lations, we hope to have expanded on the knowledge on Hill’s method, making it more
available for further studies, for instance of flow and reactions in porous media.
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Abstract: Single-molecular polymers can be used to analyze to what extent thermodynamics applies
when the size of the system is drastically reduced. We have recently verified using molecular-dynamics
simulations that isometric and isotensional stretching of a small polymer result in Helmholtz and Gibbs
stretching energies, which are not related to a Legendre transform, as they are for sufficiently long
polymers. This disparity has also been observed experimentally. Using molecular dynamics simulations
of polyethylene-oxide, we document for the first time that the Helmholtz and Gibbs stretching energies
can be related by a Legendre–Fenchel transform. This opens up a possibility to apply this transform to
other systems which are small in Hill’s sense.

Keywords: nanothermodynamics; polymers; molecular simulation; single-molecule stretching

1. Introduction

As we reduce system dimensions from the micro- to the nano-scale, surface properties become
increasingly important, and the normal thermodynamic equations (thermodynamic limit properties)
cease to apply. Hill [1] proposed a way to restore the structure of ordinary Gibbs’ thermodynamics to
deal with small systems. His idea was to introduce an ensemble of small systems, for which ordinary
thermodynamics again can be applied. For an in-depth discussion, see also [2]. In Hill’s description,
Legendre transforms and Maxwell relations exist, but only at the level of the ensemble of small systems.
A single small system, however, does not obey the normal Legendre transforms. A characteristic
of small systems is that extensive properties cease to be extensive due to finite size effects, and the
thermodynamic potentials depend on the type of environmental control variables, or the ensemble
to which they belong. In other words, in general, statistical ensembles are not equivalent for small
systems. This striking property is typically observed also in systems with size comparable with the
range of the interactions [3–5]. Ensemble inequivalence in long-range interacting systems is related to
the occurrence of curvature anomalies in thermodynamic potentials, which in this case arise because
the interaction energy is not additive. It has been shown that Hill’s approach for small systems can be
implemented for long-range interacting systems as well, and that it naturally takes into account the
non-additivity induced by the interactions [6,7]. Such a parallelism between small systems and systems
with long-range interactions [8,9] indicates that the methods used to describe long-range interacting
systems also may find a wider application in the characterization of small systems, and vice versa.
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For small systems, the relative size of the fluctuations will be of more significance than for a typical
large system. For sufficiently small polymers with a non-linear force-response, one would expect the
difference in fluctuations to give rise to size-dependent ensemble deviations. The energy involved
in stretching then depends on whether one controls the stretching length or the stretching force.
The average force for isometric stretching of a small molecule differs from that of isotensional stretching.
In the long polymer limit, they are the same, however, and this has been verified experimentally,
computationally, and theoretically. A detailed discussion of this is given by Süzen et al. [10].

We have also studied this problem [11], and verified that the forces were not the same, as predicted
from theory. This resulted in a Helmholtz energy for isometric stretching and a Gibbs energy for
isotensional stretching for small molecules that were not related by a Legendre transform, which is also
known from experiments by Keller et al. [12]. In addition, ensemble inequivalence has been recently
highlighted in pulling experiments by Monge et al. [13].

A question therefore arises: is it then at all possible to transform the small system description from
one set of variables to another set, like we normally do when we use Legendre transforms? To be more
specific: is it possible to transform the Helmholtz energy of a molecule (which describes isometric
stretching) into its Gibbs energy (which applies for isotensional stretching)? The aim of this short
communication is to show that this is indeed possible.

We shall use our earlier simulation results [11] and verify that the Helmholtz and Gibbs energies for
the stretching of a short polymer can be related to each other using the Legendre–Fenchel transform [14],
a generalization of the usual Legendre transform, suitable for free energies that exhibit curvature
anomalies. This transform has already proven useful in long-range interacting systems displaying
ensemble inequivalence [5,15,16], and here it is applied for the first time to a common stretching
phenomenon. The Legendre–Fenchel transform reduces to the usual Legendre transform when the
Helmholtz energy is differentiable and convex; in the present case, this happens for large polymers.
As we precisely show with our numerical simulations, the Helmoltz energy of the considered small
polymers in fact present curvature anomalies under certain conditions, making it impossible to use the
conventional Legendre transform.

2. Method

This section is split into two parts. The first part introduces the model and the computational
details, and the second part presents the theoretical method.

2.1. Simulation Details

We use the same model as some of us have used previously [11,17] to investigate molecular
stretching of poly-ethylene oxide (PEO) on the form CH3−[O−CH2−CH2]n−O−CH3 in molecular
dynamics simulations. It is a united-atom model with each bead representing either a methyl group,
a methylene group or an oxygen atom. This model is based on a common model documented in the
literature [18–20], and has all the standard contributions to the potential energy from bond stretching,
bending, and torsion, and includes also the breaking of bonds. It therefore lends itself well to a testing
of the stretching energies. In this particular force-field, the standard harmonic bond stretching potential
is replaced by a Morse potential

Ubond({Ri, i = 1, N}) = Dij

[
1 − e−αij(rij−r̄ij)

]2
, (1)

where the parameters for the dissociation energies Dij are obtained from density functional

computations from the literature [21]. The stiffness of the bond is determined by αij =
√

Ks
ij/2Dij.

Furthermore, the potentials for the bending and torsion of bonds read
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Ubend({Ri}) = 1
2 ∑

{ijk}
Kb

ijk[θijk − θ̄ijk]
2 (2)

and
Utors({Ri}) = ∑

{ijkl}
∑
{c}

Kt,c
ijkl cos c−1(φijkl), (3)

where i, j, k and l are atoms joined by consecutive covalent bonds. Ks
ij, Kb

ijk, Kt
ijkl are force constants

for stretching (s), bending (b) and torsion (t). r̄ij and θ̄ijk are equilibrium values for bond stretching
and bending, respectively. All force-field parameters were tabulated previously [11]. Non-bonded
interactions were not taken into account in the current work, which means that our model polymer
is surrounded by an implicit theta solvent. The force field is compatible with the LAMMPS [22]
simulation package, that has been used for all of our computations.

The temperature was set to 300 K during sampling, and was controlled by a Langevin thermostat
with a relaxation time of 1 ps and a time step of 1 fs. The initial configurations were exposed to a
simulated annealing protocol prior to sampling, in an attempt to capture a representative portion of
the phase space [17,23]. The presented data are averaged over 5 ns for 200 samples.

2.2. Energy Transforms

For the theoretical analysis, consider now an arbitrary polymer with N beads. The energy of the
polymer is given by

H(r1, ..., rN ; p1, ..., pN) =
N

∑
j=1

p2
j

2mj
+ V(r1, ..., rN) , (4)

where pj ≡
∣∣pj
∣∣ , mj is the mass of bead j, and V(r1, ..., rN) is the potential interaction. In our previous

work [11,17], we gave an explicit expression for the interaction potential with contributions from bond
stretching, bending, and torsion. The polymer is controlled either in the isometric ensemble by fixing
the end-to-end distance x ≡ |rN − r1|, or in the isotensional ensemble by applying a stretching force
f ≡ |fN − f1|. The canonical partition function in the isometric ensemble is

Z(T, N, x) =
1

h̄3(N−1)N!

∫ ′
dr1...drN

∫ ′
dp1...dpN exp (−βH) , (5)

where the end-to-end distance x is controlled, by keeping rN − r1 constant in the integral over the
spacial coordinates. The prime for the spacial integrals indicates this. The prime for the momenta
indicates that we keep the center of mass fixed. Furthermore h̄ is Planck’s constant and β ≡ 1/ (kBT),
where kB is Boltzmann’s constant. Because of the symmetry of the system the partition function Z
depends only on x and not on the direction of rN − r1. The partition function for the isotensional
ensemble is

Δ(T, N, f ) = β f
∫ xmax

0
dxZ(T, x) exp(β f x) , (6)

where now the stretching force is constant, and xmax denotes the length of the unfolded polymer.
The Helmholtz energy is given by

F(T, N, x) = −kBT ln Z(T, N, x) , (7)

and the Gibbs energy by
G(T, N, f ) = −kBT ln Δ(T, N, f ) , (8)

in which x and f are the relevant conjugated variables as usully considered in thermodynamics and
statistical mechanics of polymer systems [24]. It follows from Equation (6) that

exp [−βG (T, N, f )] = β f
∫ xmax

0
dx exp {−β [F(T, N, x)− f x]} . (9)
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This makes it possible to calculate the Gibbs energy in the isotensional ensemble from the Helmholtz
energy in the isometric ensemble. As the above derivation shows, this transformation is also correct
for small polymers.

For sufficiently long polymers, the usual Legendre transform

G (T, N, f (x)) = F(T, N, x)− f (x)x (10)

is valid. However, we verified in our first paper [11], using molecular dynamics simulations, that for
small polymers, the usual Legendre transform is not valid.

Differences in the Helmholtz energy are calculated using

F(T, N, x1)− F(T, N, x0) =
∫ x1

x0

f̄ (x)dx . (11)

Gibbs energy differences are calculated using

G(T, N, f1)− G(T, N, f0) = −
∫ f1

f0

x̄( f )d f . (12)

By Equation (9), one may also find the Gibbs energy from F(T, N, x1) in Equation (11). With x0 = 0
and f0 = 0, Equation (9) gives

exp {−βG (T, N, f (x1))} = β f (x1)
∫ xmax

0
dx exp {−β [F(T, N, x)− f (x1)x)]} , (13)

where f (x1) is obtained by means of interpolation of the isotensional force-elongation curve. From a
saddle point approximation to compute the integral in Equation (13), one obtains

− GLF (T, N, f (x1)) = max
x

[ f (x1)x − F(T, N, x)] . (14)

The function F∗(T, N, f ) = −GLF(T, N, f ) is known as the Legendre–Fenchel transform [5,15,16] of
F(T, N, x) with respect to x at constant T and N.

The Legendre–Fenchel transform is a generalization of the Legendre transform, well known in
statistical physics [5,16], and reduces to the latter when the transformed function is differentiable and
convex. An important property of the Legendre–Fenchel transform is that it always yields convex
functions; thus −GLF( f ) is convex in f at constant T and N. Furthermore, if F∗( f ) = −GLF( f ) is
transformed again, one has

F∗∗(x) = max
f

[ f x + GLF( f )]. (15)

Because −GLF( f ) is a convex function, at points f for which −GLF( f ) is differentiable the above
transform (15) reduces to the usual Legendre transform, leading to

F∗∗(x) = f (x)x + GLF( f (x)), (16)

where f (x) is the unique solution to dGLF( f )/d f = −x. Since F∗∗(x) is simply the Legendre transform
of −GLF( f ), the former is the isotensional Helmholtz free energy. Moreover, due to the properties
of the Legendre–Fencel transform, F∗∗ is the convex envelope of the isometric free energy F, namely,
the largest convex function such that F∗∗ ≤ F. Thus, the isometric and isotensional ensembles
are not equivalent if F does not coincide with its convex envelope F∗∗. In mathematical terms,
ensemble inequivalence may arise because the Legendre–Fenchel transform is not necessarily self-dual
(or involute), that is, F∗∗ �= F when F is non-convex. In contrast, the convex envelope F∗∗ of F has the
same Legendre–Fenchel transform as F, meaning that (F∗∗)∗ = F∗ [16].
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We have outlined a method for obtaining the free energy GLF in the isotensional ensemble from
the free energy F in the isometric ensemble. This method applies, in particular, when F is non-convex.
By computing the derivative of GLF = GLF (T, N, f (x1)) with respect to f , one obtains the force
elongation relation

d
d f

GLF = −x( f ) (17)

in the isotensional ensemble. The purpose of this paper is now to test these formulas.

3. Simulation Results

In the molecular dynamics simulations, one obtains the average force f̄ (x) = 〈 f (t)〉x between
the end points in the isometric ensemble. In the isotensional ensemble, one obtains the average
distance between the endpoints x̄( f ) = 〈x(t)〉 f . The force-elongation curves from the isometric and
isotensional ensembles are shown as a function of the length per bond xb = x/(N − 1) for systems of
size N = 12, 24 and 51 in Figure 1a–c.
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Figure 1. Force as a function of length per bond from isometric and isotensional simulations for
chains of poly-ethylene oxide (PEO) composed of N = 12, 24 and 51 united atoms. The ensemble
inequivalence is most pronounced for the smallest systems.

It is clear from these figures that the isometric and the isotensional force are different, a fact that is
more pronounced for the smaller polymers. In the isometric ensemble, the slope of the curve f̄ (x) is
not restricted to be a positive quantity, since the Helmoltz free energy F(T, N, x) is not necessarily a
convex function with respect to x at fixed T and N.

In other words, the response function κ(x) defined through

1
κ(x)

=

(
∂ f̄
∂x

)
T,N

=

(
∂2F
∂x2

)
T,N

(18)

can be negative in the isometric ensemble [25], meaning that the associated system configurations
minimize the free energy when the average force between the ends of the polymer decreases for
increasing elongation. Under these conditions, interactions between monomers tend to separate them
from each other, decreasing internal forces required to keep the polymer in equilibrium. We highlight
that negative values of κ(x) in this ensemble may be realized because x is always kept fixed at a definite
value. Furthermore, in the isotensional ensemble, the end-to-end distance fluctuates at constant applied
force. In that case, the slope of x̄( f ) cannot be negative, namely,

κ( f ) =

(
∂x̄
∂ f

)
T,N

= −
(

∂2G
∂ f 2

)
T,N

≥ 0, (19)

because internal forces under these conditions do not equilibrate with the external force applied on
the polymer.

The points of negative slope in the isometric ensemble can be explained by the torsional unfolding
of the molecule. These mechanically unstable modes are not accessible in the isotensional ensemble. As a
consequence, we see that the ensemble deviation is most pronounced around xb = 1.1, which marks the
end of the region for torsional unfolding. This was previously discussed in great detail [11]. Prior to this
region, around xb < 0.5, the molecule is twisted helically, and the relation between force and elongation
is predominantly linear due to entropic effects. In the last regime, with xb > 1.1, the molecule is planar,
and the force-elongation curve is dominated by the stretching of the individual monomers.

Differences in the Helmoltz energy are found from the isometric ensembles by Equation (11),
and the Gibbs energy differences are found from the isotensional ensemble by Equation (12).
The Legendre–Fenchel transform of the Helmoltz energy is then found by Equation (14). We present
these curves for systems of size N = 12, 24 and 51 in Figure 2a–c. The Gibbs energy is shown with an
orange line, and is compared to the Legendre transform of the Helmholtz energy in blue. It is clear that
the Legendre–Fenchel transform of the Helmholtz energy, shown with a black dotted line, gives an
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approximation to the Gibbs energy that is far superior that of the Legendre transform. We would also
like to stress that the Legendre–Fenchel transform is exact in the limit N → ∞, since the saddle-point
approximation is exact in this limit.
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Figure 2. Energy as a function of length per bond for chains of PEO composed of N = 12, 24 and
51 united atoms. While the Legendre transform of the Helmholtz energy F is different from minus the
Gibbs energy G, we see that the Legendre–Fenchel transform GLF is an excellent approximation in all
three cases.
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We can see from Figure 2a–c that even for finite N, the free energy GLF (T, N, f (x1)) is in excellent
approximation equal to G (T, N, f (x1)). This shows that the exact transformation, which follows
from the relation between the partition function, given in Equation (13), as well as the approximate
Legendre–Fenchel transform, Equation (14), can be used to obtain the Gibbs energy from the Helmholtz
energy for the stretching of small polymers. The curve for f̄ (x1)x1 − F(T, N, x1) is the result of the
isometric simulations and differs from the Gibbs energy curves. This shows clearly that the Legendre
transform, given in Equation (10), is not valid for small polymers.

In Figure 3a,b we present the energies from Figure 2a,b as a function of force rather than elongation
for systems of size N = 12 and 24. As the curves for the Helmholtz energy for these systems are
not convex, the corresponding Legendre transformed curves as a function of force is not one-to-one.
This is emphasized in the inserts.
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Figure 3. Energy as a function of force for chains of PEO of composed of N = 12 and 24 united atoms.
The smallest system displays multiple singularities, one of which is emphasized in the insert. Although
less pronounced, singularities can be seen also in the system with N = 24.

The force elongation relation for the Legendre–Fenchel transformed energy can be obtained by
the derivative of GLF with respect to f , cf. Equation (17). This monotonically increasing curve is shown
with a black dotted line in Figure 4a–c, with the original force-elongation curves for comparison. It is
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clear that the Legendre–Fenchel transform is non-involutive for N = 12, and that it is involutive for
N = 51, where it reduces to the Legendre transform [14].
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Figure 4. The force-elongation curve xLF computed from the Legendre–Fenchel transform cf.
Equation (17) is compared to the force-elongation curves from Figure 1. We recognize the singular
points in GLF as jumps in xLF( f ), particularly visible in the smallest system with N = 12.
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4. Discussion and Conclusions

We have analyzed the stretching of small polymers in which the thermodynamic limit cannot
be invoked. We have shown that small size contributions to the isometric Helmholtz free energy
induce curvature anomalies in this thermodynamic potential, which disappear as the number of beads
in the polymer is increased. We described a method employing the Legendre–Fenchel transform to
manage these curvature anomalies and obtain the isotensional Gibbs free energy from simulations in
the isometric ensemble, in such a way that the states characterized by this free energy are unique.

The Legendre–Fenchel transform in Equation (14) reduces to the usual Legendre transform
(Equation (10)) when the free energy F(x) is differentiable and convex in x at constant T and N.
Legendre–Fenchel transforms rather than Legendre transforms must be used in particular because
F(x) is non-convex [5,16]. As noted previously, the Legendre–Fenchel transform always yields convex
functions and therefore, −GLF( f ) is convex in f at constant T and N. The fact that −GLF( f ) is convex
ensures that the slope of the curve x̄( f ) is non-negative, as required in equilibrium states under
fluctuations of the end-to-end distance. Remarkably, this is the case when the free energy F(x) presents
a non-convex anomaly in the isometric ensemble. This implies a negative slope in the curve f̄ (x).
The Legendre–Fenchel transform maps the states associated with the anomaly into a point f at which
−GLF( f ) is non-differentiable. This behavior is exemplified in Figure 3a,b for N = 12 and N = 24,
respectively; in particular in the inserts. Such singularities are not observed for N = 51, as F(x) in this
case is convex.

We have seen above that the Legendre–Fenchel transform enables us to transform the stretching
energy from the isometric to the isotensional ensemble also for small polymers. This removes the
limitations set by the Legendre transforms, applicable only in the thermodynamic limit, and opens up
a possibility for wider applications. The scheme documented here for molecular stretching energies
reduces to the usual Legendre transforms in the thermodynamic limit.
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Abstract: Small system properties are known to depend on geometric variables in ways that are
insignificant for macroscopic systems. Small system considerations are therefore usually added to the
conventional description as needed. This paper presents a thermodynamic analysis of adsorbed films
of any size in a systematic and general way within the framework of Hill’s nanothermodynamics.
Hill showed how to deal with size and shape as variables in a systematic manner. By doing this,
the common thermodynamic equations for adsorption are changed. We derived the governing
thermodynamic relations characteristic of adsorption in small systems, and point out the important
distinctions between these and the corresponding conventional relations for macroscopic systems.
We present operational versions of the relations specialized for adsorption of gas on colloid particles,
and we applied them to analyze molecular simulation data. As an illustration of their use, we report
results for CO2 adsorbed on graphite spheres. We focus on the spreading pressure, and the entropy
and enthalpy of adsorption, and show how the intensive properties are affected by the size of the
surface, a feature specific to small systems. The subdivision potential of the film is presented for
the first time, as a measure of the film’s smallness. For the system chosen, it contributes with a
substantial part to the film enthalpy. This work can be considered an extension and application of the
nanothermodynamic theory developed by Hill. It provides a foundation for future thermodynamic
analyses of size- and shape-dependent adsorbed film systems, alternative to that presented by Gibbs.

Keywords: adsorption; thin film; nanothermodynamics; small-system; size-dependent;
thermodynamics; spreading pressure; entropy of adsorption

1. Introduction

Adsorption is a central process in nature and in engineering. An important case in nature is
adsorption on particles in the atmosphere. It has been recognized for many years that the representation
of cloud processes is a significant source of uncertainty in climate models. Many interactions
among particles in the atmosphere, clouds and precipitation are relevant for such processes and
are the focus of a large area of climate change research [1]. The particles may vary in type,
size and shape, and may originate from phenomena such as forest fires and volcanic eruptions,
or from human activity such as industry and transportation. They follow the rising air through
expansion and cooling, and serve, among other things, as condensation and ice nucleation sites.
The initiation of condensation on particles begins with the adsorption or absorption of molecules
from the surrounding air. Therefore, the development of more accurate climate models will benefit
from a better understanding of these processes for small, curved particles. Although we use herein
condensation on particles in the atmosphere as an important application, the focus of this work is on
the fundamentals of adsorption on small systems in general.
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A substantial amount of research from the 1930s onward on size-effects in thermodynamics may
be found, for instance, in the literature on nucleation [2–8]. The majority of the work is based on
Gibbs’ theory of heterogeneous systems [9]. However, there exists an alternative to the method of
Gibbs, developed by Hill in the early 1960s [10]. Hill’s method distinguishes itself by the fact that
it is a unified and systematic approach to the treatment of all small systems, and does not require
the concept of dividing surfaces to be introduced at the outset. The equivalence of Hill’s and Gibbs’
method in its most general form for the description of curved surfaces has recently been verified [11].
The method is a generalization of macroscopic thermodynamics to small systems, and thus contains
conventional thermodynamics as a special case in the macroscopic limit. By generalizing the
fundamental differential equations traditionally used in thermodynamics, the whole internal structure
of thermodynamic relations for small systems follows naturally by the familiar methods such as
Euler integration, which otherwise would not apply for size dependent systems. The analogue of
the Gibbs–Duhem equation for small systems is then readily available, and relations describing the
size- and shape-dependence of all intensive properties follow. This has motivated us to describe
adsorption on small systems using Hill’s theory to provide a solid foundation for the present and
similar investigations. The aim of the study was thus to present a set of equations for adsorption on a
small adsorbent, alternative to existing theories, most prominently Gibbs, and illustrate the set using
molecular simulations of CO2 adsorption on a small sphere of graphite.

In conventional thermodynamics an adsorption system may be described in several ways, one of
which considers the system to be the adsorbed phase only. The adsorbent properties are then
subtracted from the properties of the surroundings, with the exception of the interaction energy
with the adsorbed phase [12]. This view recognizes the asymmetric nature of the system and leads
naturally to thermodynamic properties per film molecule. Another approach is to treat the system as a
solution of adsorbent and adsorbate [13]. This application is referred to as solution thermodynamics.
Though both approaches may be applied, the potential usefulness of one over the other relates to the
possible interchange of adsorbent and adsorbate components. In the asymmetric approach, hereafter
referred to as adsorption thermodynamics, the focus is on obtaining thermodynamic properties and
relations for the adsorbed phase. In the systems typically considered, the properties are categorized
as extensive or intensive depending on whether they are proportional to or independent of the
size of the film. Therefore, even though the size is necessary in order to completely characterize
the film, the nature of the film appears to be independent of it. As a consequence, the differential
thermodynamic relations for the adsorbed phase are Euler homogeneous and of first degree in the
extensive properties [14]. The relations are therefore directly integrable by the theorem of Euler.

For small systems, the statements above must be modified. The properties normally referred
to as intensive are no longer independent of size, so the conventional use of the terms intensive and
extensive must now refer to properties that obtain the implied characteristics in the macroscopic
limit. The differential thermodynamic relations for a single system are no longer linear homogeneous
functions, and can not be directly integrated as before. As the nature of the film now depends on its
size and shape, it becomes of interest to systematically investigate the effects of size and shape in a
framework that allows for this in a general way. This is possible in the thermodynamic theory of small
systems, or nanothermodynamics, as developed by Terrell L. Hill [10], and is the precise reason why
we would like to advocate this method. For a more recent text on the method, see Bedeaux et al. [15].

To be able to recognize these differences is important, because it enables us to compare energies of
systems that vary in size. Consider two nanoparticles at ambient conditions. One is slightly larger than
the other, but they are otherwise identical. The particles do not have bare surfaces; molecules will be
adsorbed from the environment—for instance, adsorption of CO2 on the surfaces of the particles (not
adsorption of nano-sized particles on a macroscopic surface). A central question is then: how do the
thermodynamic properties of the adsorbed phase differ between the two cases? This is an important
question because the adsorbed phase is an interface through which the particle interacts with its
environment. Some forms of energy transfer and some forms of interactions are strongly influenced by

98



Nanomaterials 2020, 10, 1691

the presence of adsorbed phases. Not only would size affect the intensive properties, but depending on
the constraints on the system, intensive properties may suffice to determine the system size. At length
scales where properties typically are size- and shape-dependent, the nanothermodynamics of Hill may
help us investigate the interplay between the nature of a system and its size. This is not to say that
other approaches may not be successful (see, e.g., [3]), but the corresponding overarching relations
(e.g., Maxwell relations) may be less obvious in these. Therefore, the existence of an alternative method
may be useful per se.

Our aim was, therefore, to establish operational thermodynamic relations that enable
investigations of thin film properties from a nanothermodynamic perspective. Our work has its
basis in the work of Hill on nanothermodynamics [10] and papers V [16] and IX [13] in the series
on statistical mechanics of adsorption. The relations were applied to molecular simulations of CO2

adsorption on a spherical graphite-like adsorbent, and to CO2 adsorption on a generic adsorbent
with a strong interaction potential. The purpose of the generic adsorbent case was to observe size
effects that were thought to possibly occur when there is significant adsorption on very small particles.
The outcome was meant to give a foundation for future, similar developments. The contribution of this
work is to clarify and extend the work of Hill on nanothermodynamics and provide a new application.

This paper is organized as follows: In Section 2 we derive general thermodynamic relations
for a single-component adsorbent with a single-component adsorbed phase. As the application of
Hill’s nanothermodynamics is rather limited so far, we considered it necessary to recapitulate the
central hypothesis and basis. Readers that are mainly interested in the operational relations and their
application may skip this section. Readers that are interested in a comprehensive description of the
theory and philosophy of nanothermodynamics are referred to the original work [17] or the recent
work [15].

In Section 3 we use the relations to derive operational equations that in turn are applied to the
chosen cases. We make simplifying assumptions for the adsorbent, select a reference state typical of
adsorption thermodynamics and introduce the condition of equilibrium between the film and the gas.
We also derive relations for the dependence of intensive properties on size.

In Section 4 we describe the details of the simulation setup and the methodology for the
simulations and the thermodynamic analysis. In Sections 5 and 6 we present and discuss the
simulation results, demonstrating the size dependence of a few select thermodynamic properties.
We compare the integral free energy per unit area to the differential change in free energy with respect
to the change in area. These are properties that are equal in the macroscopic limit. We compare the
enthalpy per molecule to the entropy per molecule times temperature, which are also properties that
are equal in the macroscopic limit. Finally, in Section 7 we make concluding remarks and propose
directions for future work.

2. Nanothermodynamic Framework

In this section, we explain the basic idea of Hill, after considering a common example that
motivates his approach; see also Bedeaux et al. [15].

2.1. Small vs. Large Systems

Consider a macroscopic, non-volatile adsorbent of one component with adsorbed adsorbate of
one component on the surface, in complete equilibrium with a macroscopic gas adsorbate of the
same component. The gas is at temperature T and chemical potential μ, and the external pressure is
completely determined by these two variables. The adsorbent may then be taken as a thermodynamic
system with a fixed number NA of its component species, in the constant temperature and pressure
environment provided by the gas. A large system has the characteristic Gibbs energy GA(T, p, NA) =

NA f (T, p). Here f is a function of T and p, but independent of the size NA and the amount of adsorbed
adsorbate N. This implies that contributions of the surface and contributions of the adsorbed adsorbate
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to the thermodynamic functions of the adsorbent are negligible and that the energy GA is extensive in
NA. From standard thermodynamics we then have

μ′
A =

(
∂GA
∂NA

)
T,p

= f (T, p) =
GA
NA

(1)

where the chemical potential is denoted by a mark to ensure it is not confused with the chemical
potential in the general Section 2.

Now consider instead the same system, not large, but small enough for the intensive properties to
depend on the size, as measured by the value of NA. The energy needs to include additional terms
related to the size.

The first equality in Equation (1) is still true, but the chemical potential μ′
A is now a different

function that depends on the size of the system. Furthermore, GA is no longer extensive in NA;
thus, the relation μ′

A = GA/NA is no longer true. The relation is re-established in the macroscopic
limit, when the terms related to the system size become insignificant. An exact relation, in place of
Equation (1), that is valid for the small system may be given using either Gibbs’ or Hill’s approach.
In Hill’s approach a new intensive property denoted by the “hat” symbol is introduced to denote
the last member of Equation (1); see [17] (p. 1). Here the property is the new chemical potential
μ̂′

A ≡ GA/NA, but for other environments analogous properties are defined. The introduction of this
property helps distinguish between the terms μ′

ANA and μ̂′
ANA that appear in the integrated forms of

the thermodynamic potentials of the macroscopic and small systems, respectively. That these terms are
different is a consequence of the fact that the fundamental equations for small systems are not Euler
homogeneous. This is the essential difference between macroscopic and small system thermodynamics.
Both μ′

A and μ̂′
A for small systems are functions of NA in addition to T and p, and are therefore different

from the macroscopic chemical potential. In the macroscopic limit μ′
A and μ̂′

A both become equal to
the macroscopic chemical potential.

When the environment variables include multiple extensive variables, e.g., T, p, N1, N2, . . . ,
new intensive properties conjugate to the extensive variables are not defined. Instead, the energy
term is referred to as X, and depends on the environment. This notation still distinguishes it from the
respective terms, e.g., X �= μ1N1 + μ2N2 + . . . , in the integrated form of the thermodynamic potential
for the macroscopic system, but it does not indicate what type of energy it is per se.

2.2. Hill’s Extension

The example above shows how properties of small systems may depend on the system size.
A relevant theory must therefore allow for variations in size. The theory needs, furthermore, to produce
thermodynamic functions and relationships for a single small system. Hill was able to extend large
scale thermodynamics to include small systems. In the macroscopic limit his theory becomes identical
to the standard thermodynamic equations.

Macroscopic thermodynamics can be applied to a large sample of small systems, such as a
macromolecular solution where the small system is the solute macromolecule. In this description we
may change the number of small systems, but we cannot change the size of the small system itself.
To have a solid foundation for the theory and at the same time allow for variations in size, Hill used
the macroscopic thermodynamics of an ensemble of independent small systems as his starting point
and introduced size-determining properties as variable parameters. An ensemble is a large collection
of systems, where each system replicates the thermodynamic state and environment of the actual
thermodynamic system [18]. A member of the ensemble may thus be referred to as a replica.

The system of practical interest in this work is an adsorbent consisting of a single component
of quantity NA with an adsorbed phase consisting of a single component of quantity N. The system
is at temperature T, pressure p and adsorbed component chemical potential μ, and is completely
characterized by T, p, μ and NA. A real system of this type will always exist in the presence of
adsorbate molecules—for instance, as free molecules in a gas. The distinction between adsorbed and
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free molecules is then somewhat arbitrary. There is nothing within the framework of thermodynamics
that provides a unique definition of the distinction, so this information must come from elsewhere,
such as from experiment or from a theoretical model. In order to stay as general as possible, we make
no assumptions in this regard for the time being; cf. Section 4.

In the present case, the method of Hill considers an ensemble of N independent small systems
at temperature T, pressure p and adsorbed component chemical potential μ. All systems have the
same assigned amount of adsorbent component NA. The ensemble, with total properties denoted by
subscript t, can now be characterized by the entropy St, volume Vt, amount of adsorbed component Nt

and amount of adsorbent component N NA. We allow for an independent variation in the number of
small systems N and also in the size of the small systems, as given by NA. The characteristic function
for the ensemble in terms of the set of independent variables St, Vt, Nt, NA, N is the internal energy
Ut given by

dUt = T dSt − p dVt + μ dNt + μAN dNA + X dN (2)

where X, the replica energy, may from Equation (2) be formally defined by

X ≡
(

∂Ut

∂N
)

St ,Vt ,Nt ,NA

(3)

The function X describes how a change dN in the number of small systems will change the
internal energy of the entire ensemble through X dN . From a physical perspective X dN refers to the
process of adding systems to the ensemble, each with the same amount of adsorbent component NA,
while keeping St = N S, Vt = N V̄, and Nt = N N̄ constant. This process explains why X may
be referred to as the replica energy. For the distribution of small systems over the possible states,
this means that the entropy S, the mean volume V̄ and the mean amount of adsorbed component
N̄ must decrease. In the process, the ensemble gains the amount NA dN of adsorbent component,
as opposed to the amount N dNA, while the properties St, Vt and Nt must be redistributed across the
new number of systems N + dN . The term X dN is of the same type as the chemical potential term
μAN dNA. However, μA refers to the addition of a differential amount dNA of adsorbent component
for each replica, N dNA in total, while X refers to the addition of a single system, or an integral amount
of adsorbent component NA. We see this also by looking at the last two terms in Equation (2) which may
be rewritten as μAN dNA + X dN = μA d(N NA) + (X − μANA) dN = μA dNt,A + (X − μANA) dN .
In the macroscopic limit the ensemble energy is completely characterized by St, Vt, Nt and Nt,A and the
term (X − μANA) dN is zero. It follows that in the macroscopic limit X → μANA. This motivates the
definition of the new function μ̂A by μ̂ANA ≡ X such that μ̂A → μA in the macroscopic limit. Both μ̂A
and μA differ from the macroscopic chemical potential at the same T and p.

The small system can therefore be said to differ from a large one, by the thermodynamic function E ,
where E ≡ (μ̂A − μA)NA. This function, which can be viewed as a correction from macroscopic
thermodynamics, has been called the subdivision potential, because the process of subdividing
the ensemble into a larger number of smaller systems, while keeping St, Vt, Nt and Nt,A constant,
requires the energy E dN . It has recently been shown to contain interesting size-scaling laws [15,19,20].
The replica energy, the subdivision potential and the scaling laws are particular for the variables that
control the ensemble. The presented results refer to an osmotic ensemble, with environment variables
T, p, μ and NA.

Next come the thermodynamic functions that follow from Equation (2). By integrating Equation (2)
at constant T, p, μ, NA; defining Ut ≡ N Ū, St ≡ N S, Vt ≡ N V̄ and Nt ≡ N N̄; and dividing by N we
obtain the mean internal energy of a single small system given by

Ū = TS − pV̄ + μN̄ + μ̂ANA (4)

101



Nanomaterials 2020, 10, 1691

By substituting the definitions for Ū, S, V̄ and N̄ in Equation (2) and eliminating μ̂ANA by
Equation (4), it follows that

dŪ = T dS − p dV̄ + μ dN̄ + μA dNA (5)

The differential change in internal energy for a single small system given by Equation (5) has the
same form as for a macroscopic system, with the important distinction that the intensive properties are
functions of the size of the system. The energy Ū is therefore not a linear homogeneous function of S,
V̄, N̄ and NA. Therefore we can not obtain Equation (4) by Euler integration of Equation (5). This can
be seen clearly if we rewrite Equation (4) as

Ū = TS − pV̄ + μN̄ + μANA + E (6)

where we have used the previous definition E ≡ (μ̂A − μA)NA. The equation is the same as we would
expect for a macroscopic system except for the extra term E . This general feature of small systems
has important implications for the Clausius–Clapeyron type equation (Equation (36)), and for the
analogue for a small system of the Gibbs adsorption isotherm; see the discussion below in relation to
Equation (48). By differentiating Equation (4) and subtracting Equation (5), we obtain

d(μ̂ANA) = −S dT + V̄ dp − N̄ dμ + μA dNA (7)

This is the function characteristic of a single system of the ensemble for the independent
variables T, p, μ, NA. It is of particular interest operationally because the independent variables
are the environment variables. By subtracting d(μANA) from Equation (7) we have

dE = −S dT + V̄ dp − N̄ dμ − NA dμA (8)

This equation shows that a small system has one additional independent variable compared
to a macroscopic system. In the macroscopic limit, E = 0 and Equation (8) becomes the
Gibbs–Duhem equation, a relation between the intensive variables T, p, μ and μA such that only
three of them are independent. From Equations (7) and (8) it follows that

dμ̂A = − S
NA

dT +
V̄

NA
dp − N̄

NA
dμ − E

N2
A

dNA (9)

dμA = −
(

∂S
∂NA

)
T,p,μ

dT +

(
∂V̄

∂NA

)
T,p,μ

dp −
(

∂N̄
∂NA

)
T,p,μ

dμ − 1
NA

(
∂E

∂NA

)
T,p,μ

dNA (10)

The expression for dμA is obtained by considering μA a function of T, p, μ and NA, and writing
the general expression for the differential. The first three differential coefficients, i.e., in T, p and μ

are obtained by Maxwell relations from Equation (7). By substituting the general expression for
dμA in Equation (8) and setting T, p, μ constant, we may solve for the last differential coefficient.
Equations (9) and (10) show the integral-differential relation between μ̂A and μA.

We define the Gibbs energy G and the enthalpy H by

Ḡ ≡ Ū − TS + pV̄ = μN̄ + μANA + E = μN̄ + μ̂ANA (11)

H̄ ≡ Ḡ + TS = TS + μN̄ + μ̂ANA (12)

This concludes the theoretical basis needed to describe adsorption on a small adsorbent.
We proceed to make the relations operational.
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3. Operational Relations

The thermodynamic system was defined above as the adsorbent plus the adsorbed film. We are
interested in the properties of the film, and how they vary with the size of the adsorbent. The aim is to
be able to plot adsorption isotherms, spreading pressure and corresponding film entropy and enthalpy.

3.1. The Reference State

As is the usual procedure in adsorption thermodynamics, we define the reference state as
the quantity, NA, of pure adsorbent, with volume V̄0A at external pressure, p, and temperature T.
By pure adsorbent we mean the adsorbent with a clean surface in the absence of adsorption, N → 0.
The quantities T, p and NA were defined above; see Section 2. The properties of the film can then
be defined as the properties of the total system relative to the reference. In practice, we subtract
properties of the pure adsorbent from the total system, while keeping the interaction energy with the
film molecules. The equivalents of Equations (4), (5) and (7) for the reference are given by

Ū0A = TS0A − pV̄0A + μ̂0ANA (13)

dŪ = T dS0A − p dV̄0A + μ0A dNA (14)

d(μ̂0ANA) = −S0A dT + V̄0A dp + μ0A dNA (15)

By subtracting Equation (13) from Equation (4), Equation (14) from Equation (5) and Equation (15)
from Equation (7), we obtain the equations for the film.

Ūs = TSs − pV̄s + μN̄s − Φ̂NA (16)

dŪs = T dSs − p dV̄s + μ dN̄ − Φ dNA (17)

d(Φ̂NA) = Ss dT − V̄s dp + N̄s dμ + Φ dNA (18)

where Equation (18) is the characteristic equation for the film in the given environment. Superscript F
denotes the film properties defined by Ss ≡ S − S0A, V̄s ≡ V̄ − V̄0A, N̄s ≡ N̄, Φ̂ ≡ μ̂0A − μ̂A and
Φ ≡ μ0A − μA. The property N̄s is defined for consistency in notation because N̄ is already the amount
of adsorbed component only.

3.2. Size-Dependent Thermodynamic Properties

The analysis continues from here under the approximations that the adsorbent is unaffected
by the adsorption, and that its volume, shape and structure are independent of temperature and
pressure. The adsorbent then functions only as an external field acting on the adsorbed phase. A more
general approach is required for adsorbents that evaporate/dissolve; adsorbents whose structure is
affected by the adsorption; and cases where there is no unambiguous definition of the adsorbent’s
surface area [13]. However, for the calculations done here, we do not require that level of generality.
In general the adsorbent volume may be considered to be a function of T, p and NA. However,
under the current approximations the adsorbent thermal expansion and compressibility are negligible.
It follows that the adsorbent volume and surface area are functions of NA only. For a constant spherical
shape, there is now only one independent variable among the adsorbent volume, surface area and NA.
The adsorbent surface area Ω is a natural choice when we want to describe the properties of the film
only. Eliminating NA in Equations (17) and (18) by substituting dNA = (dNA/dΩ) dΩ, we have

dŪs = T dSs − p dV̄s + μ dN̄ − ϕ dΩ (19)

d(ϕ̂Ω) = Ss dT − V̄s dp + N̄s dμ + ϕ dΩ (20)
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where we have defined ϕ ≡ Φ(dNA/dΩ) and ϕ̂ ≡ Φ̂(NA/Ω). The property ϕ is the usual spreading
pressure in adsorption thermodynamics [12]. The property ϕ̂ is related to the subdivision potential
Es by Es = (ϕ − ϕ̂)Ω. The relation can be taken as a definition of the subdivision potential.
The equivalents of Equations (9) and (10) are

dϕ̂ =
Ss

Ω
dT − V̄s

Ω
dp +

N̄s

Ω
dμ +

Es

Ω2 dΩ (21)

dϕ =

(
∂Ss

∂Ω

)
T,p,μ

dT −
(

∂V̄s

∂Ω

)
T,p,μ

dp +

(
∂N̄s

∂Ω

)
T,p,μ

dμ +
1
Ω

(
∂Es

∂Ω

)
T,p,μ

dΩ (22)

Due to the integral forms of the coefficients in Equation (21) and the differential forms of the
corresponding coefficients in Equation (22), we refer to ϕ̂ as the integral spreading pressure and to ϕ

as the differential spreading pressure. For Equations (11) and (12) relative to the reference, we see that

Ḡ − Ḡ0A = μN̄s − ϕ̂Ω = μN̄s − ϕΩ + Es (23)

H̄ − H̄0A = TSs + μN̄s − ϕ̂Ω = TSs + μN̄s − ϕΩ + Es (24)

Following the usual procedure in adsorption thermodynamics, the term ϕΩ is recognized as
the analogue of pV for ordinary three-dimensional thermodynamics. We therefore define the film
functions Ḡs and H̄s by

Ḡs ≡ Ḡ − Ḡ0A + ϕΩ = μN̄s + Es (25)

H̄s ≡ Ḡs + TSs = TSs + μN̄s + Es (26)

This ensures the relation between H̄s and Ss given in Equation (39) when the system is in
equilibrium with the gas. The relation in Equation (39) becomes the one usually encountered in
adsorption thermodynamics when the system is macroscopic and Es = 0. By Equations (21) and (22)
and the relation Es = (ϕ − ϕ̂)Ω we may write dEs in terms of the environment variables T, p, μ, Ω as

dEs = Ω2
(

∂Ss/Ω
∂Ω

)
T,p,μ

dT − Ω2
(

∂V̄s/Ω
∂Ω

)
T,p,μ

dp + Ω2
(

∂N̄s/Ω
∂Ω

)
T,p,μ

dμ + Ω
(

∂ϕ

∂Ω

)
T,p,μ

dΩ

(27)
The differential coefficients of the type ∂(Y/Ω)/∂Ω in Equation (27), where Y = Ss, V̄s, N̄s, may be

expanded as (
∂Y/Ω

∂Ω

)
T,p,μ

=
1
Ω

[(
∂Y
∂Ω

)
T,p,μ

− Y
Ω

]
(28)

This emphasizes the distinction between differential and integral quantities for small systems,
one of the key points of nanothermodynamics. In the macroscopic limit, linear homogeneous relations
of the type ∂Y/∂Ω = Y/Ω are again true and the bracket term vanishes. It follows directly from
Equation (27) that the effects of size on the intensive variables Ss/Ω, V̄s/Ω, N̄s/Ω and ϕ may be related
to Es and changes in Es by (

∂Ss/Ω
∂Ω

)
T,p,μ

=
1

Ω2

(
∂Es

∂T

)
p,μ,Ω

(29)

(
∂V̄s/Ω

∂Ω

)
T,p,μ

= − 1
Ω2

(
∂Es

∂p

)
T,μ,Ω

(30)

(
∂N̄s/Ω

∂Ω

)
T,p,μ

=
1

Ω2

(
∂Es

∂μ

)
T,p,Ω

(31)

(
∂ϕ

∂Ω

)
T,p,μ

=
1
Ω

(
∂Es

∂Ω

)
T,p,μ

(32)
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From Equation (21) we have (
∂ϕ̂

∂Ω

)
T,p,μ

=
Es

Ω2 (33)

These are the overarching relations inherent in Hill’s formalism that we next may take advantage
of in descriptions of further properties of the film. They show the central role of the subdivision
potential, which can serve as a direct measure of the system smallness, as we shall see below,
e.g., in Equation (37). The relations are not directly obtainable in Gibbs’ treatment of adsorption.
From Equation (26) using Equations (29) and (31) it follows that(

∂Hs/Ω
∂Ω

)
T,p,μ

=
T

Ω2

(
∂Es

∂T

)
p,μ,Ω

+
μ

Ω2

(
∂Es

∂μ

)
T,p,Ω

+

(
∂Es/Ω

∂Ω

)
T,p,μ

(34)

We now consider the special case where the system is in equilibrium with a macroscopic gas
at T, p. The chemical potential μ is then equal to the gas chemical potential μG. It follows that μ is
completely determined by T and p and that a change dμ is given by dμ = −sG dT + vG dp, where sG
and vG are the entropy and volume per gas molecule. Equation (21) becomes

dϕ̂ = (ss − sG)Γ̄s dT − (v̄s − vG)Γ̄s dp + Es/Ω2 dΩ (35)

where ss ≡ Ss/N̄s, v̄s ≡ V̄s/N̄s, and Γ̄s ≡ N̄s/Ω. It follows that the entropy per film molecule relative
to the entropy per gas molecule at the same conditions is given by

ss − sG = (v̄s − vG)

(
∂p
∂T

)
ϕ̂,Ω

(36)

This equation together with Equation (46) is applied below to calculate the entropy per film
molecule relative to the gas. The relation between the chemical potential of the film and the enthalpy
follows from Equation (26), and is given by

μ = h̄s − Tss − Es/N̄s (37)

where h̄s = H̄s/N̄s. From the equilibrium condition μ = μG it follows that

h̄s − Tss − Es/N̄s = hG − TsG (38)

h̄s − hG = T(ss − sG) + Es/N̄s (39)

This equation was used to calculate the enthalpy per film molecule relative to the gas
in simulations.

We can write the equations that relate the effects of size on intensive variables to Es in simpler
form. Equation (27) becomes

dEs = Ω2
[

∂(ss − sG)Γ̄s

∂Ω

]
T,p

dT − Ω2
[

∂(v̄s − vG)Γ̄s

∂Ω

]
T,p

dp + Ω
(

∂ϕ

∂Ω

)
T,p

dΩ (40)

The operational equivalents of Equations (29)–(32), now follow directly from Equation (40):[
∂(ss − sG)Γ̄s

∂Ω

]
T,p

=
1

Ω2

(
∂Es

∂T

)
p,Ω

(41)

[
∂(v̄s − vG)Γ̄s

∂Ω

]
T,p

= − 1
Ω2

(
∂Es

∂p

)
T,Ω

(42)

105



Nanomaterials 2020, 10, 1691

(
∂ϕ

∂Ω

)
T,p

=
1
Ω

(
∂Es

∂Ω

)
T,p

(43)

From Equation (35) we have the operational equivalent of Equation (33):(
∂ϕ̂

∂Ω

)
T,p

=
Es

Ω2 (44)

From Equation (39) using Equation (41), we have the operational equivalent of Equation (34):[
∂(hs − hG)Γ̄s

∂Ω

]
T,p

=
T

Ω2

(
∂Es

∂T

)
p,Ω

+

(
∂Es/Ω

∂Ω

)
T,p

(45)

3.3. Analogue of the Gibbs Adsorption Isotherm

We can integrate Equation (35) at constant T and Ω to obtain ϕ̂ if we have the adsorption isotherm
for a given adsorbent size. We then have

ϕ̂ =
∫ p

0
Γ̄s(vG − v̄s) dp, (T, Ω const.) (46)

The choice of reference system used to define the film properties can be motivated by this
operational equation. As the gas pressure decreases towards zero, the system approaches the
reference system. Therefore, ϕ̂ vanishes at the lower integration limit. The role of the subdivision
potential is no longer visible in the end formula, Equation (46), but as has been seen above, the property
can be regarded as an expression of a certain internal structure that must be obeyed.

In standard thermodynamics the well known Gibbs adsorption isotherm may be obtained
from the analogue for a surface phase of the Gibbs–Duhem relation at constant temperature [12].
The Gibbs–Duhem relation may be obtained by a standard procedure involving Euler integration
of the expression for the differential change in internal energy. When the pure adsorbent is used
as the reference state, and the criterion for the distinction between free and adsorbed adsorbate
is such that Vs = 0, the analogue of the Gibbs adsorption isotherm is given by Equation (1002,8)
in [12], or Equation (15) in [21]. At equilibrium, assuming the gas is an ideal gas, we have
dμ = dμG = vG dp ≈ kT d ln p. It follows that the integrated form of the Gibbs adsorption isotherm is
given by Equation (29) in [13], or Equation (19) in [21].

The important point here is that direct Euler integration of Equation (19) is not possible. Therefore,
the ensemble procedure is used to obtain the analogue of the Gibbs–Duhem relation for a small system,
given by

dEs = d[(ϕ − ϕ̂)Ω] = −Ss dT + V̄s dp − N̄s dμ + Ω dϕ (47)

which in integrated form at constant T and Ω gives Equation (46). Equation (47) further shows the
central role of the subdivision potential. Assuming that the gas is an ideal gas, and that the criterion
adopted for the distinction between free and adsorbed adsorbate is such that V̄s = 0, the analogue of
the Gibbs adsorption isotherm for a small system follows from Equation (46), and is given by

ϕ̂ = kT
∫ p

0
Γ̄s d ln p, (T, Ω const.) (48)

In the macroscopic limit the dependence of the intensive properties on the size of the system
becomes negligible, and we have ϕ̂ = ϕ in Equation (48).

It is interesting to compare the relation between ϕ and ϕ̂ to the relation between μ′
A and μ̂′

A;
cf. Section 2. Let the adsorbent on which the film is formed be macroscopic such that the film may be
considered flat on a scale that is small compared to the size of the adsorbent, but still large compared to
the film thickness. The film is then a thermodynamic system characterized by T, p and Ω. Suppose the
film has the energy ϕ̂Ω = f (T, p)Ω. The area Ω is then necessary in order to completely characterize
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the film, but the nature of the film is independent of it. It follows from this expression and Equation (20),
with μ = μ(T, p), that

ϕ =

(
∂ϕ̂Ω
∂Ω

)
T,p

= f (T, p) = ϕ̂ (49)

Now consider instead that the system is not macroscopic. The energy may then be alternatively
described by including additional terms related to the size of the system. For instance, suppose that
the energy is given by

ϕ̂Ω = f (T, p)Ω + g(T, p, Ω) (50)

We would then have

ϕ =

(
∂ϕ̂Ω
∂Ω

)
T,p

= f +
(

∂g
∂Ω

)
T,p

(51)

Es

Ω
= ϕ − ϕ̂ =

(
∂g
∂Ω

)
T,p

− g
Ω

(52)

We see that while the first equality in Equation (49) still holds, the second one does not.
Therefore, in order to obtain generalized thermodynamic equations that are valid for the small system
represented by Equation (50) and that become the conventional thermodynamic equations in the
macroscopic limit, we must, in addition to the regular spreading pressure ϕ, define the integral
spreading pressure ϕ̂. The two functions become equal in the macroscopic limit. Then the energy
Es dN required to subdivide the ensemble into a larger number of smaller systems is negligible. It then
follows from Equation (52) that the difference between the differential property (∂g/∂Ω)T,p and
integral property g/Ω is negligible.

4. Methodology

4.1. Simulation Techniques

Molecular simulations were done using the open source software LAMMPS
(version 20 August 2019) [22] with the grand canonical Monte Carlo simulation technique.
A simulation was run for each thermodynamic state of the film characterized by T, p and Ω.
All simulations were bounded by a cubic simulation box with periodic boundary conditions. The size
of the box varied depending on the state, but was fixed for any given state. As an example, for all
states of the graphite adsorbent system consistent with T = 1.08 and Ω ≈ 82, the side length of the
box was approximately 15 in reduced units. The gas pressure and density were sampled sufficiently
far away from the adsorbent surface for the gas to obtain bulk properties.

The interaction between the gas molecules was described by the Mie potential [23].

uG (r) = BεG

[(σG

r

)γr −
(σG

r

)γa
]

, B =

(
γr

γr − γa

)(
γr

γa

)( γa
γr−γa

)
(53)

where εG is the energy parameter of the interaction, σG is the length parameter of the interaction, γr is
the repulsive exponent and γa is the attractive exponent. The parameters were taken from [24] to
represent single site coarse-grained CO2 molecules. For the unit of energy we used the strength of
the Mie interaction 361.69 kJ, where k is the Boltzmann constant. For the unit of length we used the
diameter of the CO2 Mie segment 3.741 Å. For the unit of mass, we used the molecular mass of CO2.
We set the parameters as follows: (1) The number of Mie segments ms = 1, (2) σG = 1 by the definition
of units, (3) εG = 1 by the definition of units, (4) γr = 23.0, (5) γa = 6.66 and (6) the potential cut-off
distance rc,mie = 4.0.

The interaction between the adsorbent functioning as an external field and a gas molecule,
was represented by a spherical colloid potential located at the box center. The expression for this
potential follows by integration of the pairwise interactions between a gas molecule and the adsorbent
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constituent atoms over the adsorbent volume. The interaction between a gas molecule and the
adsorbent constituent atom was given by the standard Lennard–Jones 12-6 potential

u(r′) = 4ε

[( σ

r′
)12 −

( σ

r′
)6
]

(54)

where u(r′) is the interaction energy between an adsorbent atom and a gas molecule, r′ is the center
to center distance between them, ε is the energy parameter of the interaction and σ is the length
parameter of the interaction. By integrating Equation (54) over the spherical adsorbent, we have

U (r) = 16περAσ3

3

[
(15R3r6 + 63R5r4 + 45R7r2 + 5R9)σ9

15(r2 − R2)9 − R3σ3

(r2 − R2)3

]
, r > R (55)

where U (r) is the interaction energy between the adsorbent and a gas molecule, r is the center to
center distance between them, ρA is the adsorbent number density and R is the adsorbent radius.
The cut-off distance rc for the potential was defined by the relation U (rc)/min(U ) = 5.5 × 10−3,
where min(U ) is the potential minimum. The value of rc, satisfying the relation, was approximated
by rc = 1.23R + 3.0 for each adsorbent radius. We used the conventional definition of the Hamaker
constant A12 ≡ π2Cρ1ρ2, where C is the coefficient of the dispersion energy udisp(r′) = −C/(r′)6.
For a potential of the type in Equation (54) it follows that C = 4ε12σ6

12 and

A12 = 4π2ε12ρ1ρ2σ6
12 (56)

Using Equation (56), and the mixing rules σ = (σG + σA)/2 and ε =
√

εG εA , we may calculate
ερA σ3 in terms of σG , σA , εG , and AA for use in Equation (55). This assumed the adsorbent had the
same density as the bodies for which AA was measured. Here σA and εA are the length and energy
parameters of the dispersion energy of two interacting adsorbent atoms, analogous to σ and ε, and AA

is the Hamaker constant for the interaction between two graphite bodies. We take σA = 3.4 Å for the
carbon atom–atom interaction, and AA = 4.7 × 10−19 J for the Hamaker constant [25]. It follows that
ερA σ3 = [

√
εGAA /(16π)][(σG + σA)/σA ]

3 ≈ 1.79 in reduced units for the graphite adsorbent system.
For the generic adsorbent system we used ερA σ3 = 11.0, and the cut-off was set to the fixed value
rc = 7.

In order to use the thermodynamic relations with the simulation data, we need to be able to
distinguish between adsorbed and free molecules. We therefore define the location of a spherical
mathematical dividing surface at a radial distance a from the box center by the criterion U (a) = 0.
We then define the adsorbent volume by VA ≡ (4/3)πa3, and the number of adsorbed molecules by
N ≡ NB − ρG (VB − VA), where NB is the number of adsorbate molecules in the box, ρG is the gas
density and VB is the box volume. This is a definition based on the concept of surface excess properties
introduced by Gibbs [9]. It was easy to apply to the simulations because we had access to the total
quantity of the adsorbing component, the gas density and the volume.

4.2. Data Reduction

Plots of the integral spreading pressure ϕ̂(Ω; T, p) were first obtained from the adsorption
isotherm simulation data of the type Γ̄s(p; T, Ω), one for each area. The following prescription was
used to find the desired properties:

• The isotherms were interpolated as described below and integrated using Equation (46),
approximating the gas as ideal such that vG = kT/p.

• Each of the resulting functions ϕ̂(p; T, Ω), one for each area, were then evaluated at the desired
pressure to give the final curve.

• The curve for the differential spreading pressure, ϕ, was obtained from the functions ϕ̂(p; T, Ω) for
all areas, from the relation ϕ = ϕ̂ + Ω(∂ϕ̂/∂Ω)T,p, which follows from Equation (35) at constant
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T, p and the definition Es ≡ (ϕ − ϕ̂)/Ω. The derivative Ω(∂ϕ̂/∂Ω)T,p was approximated by
Ω(Δϕ̂/ΔΩ)T,p which was calculated from two functions ϕ̂(p; T, Ω1) and ϕ̂(p; T, Ω2) for values
of Ω1 and Ω2 not too far apart.

• The curve for Es/Ω was obtained as the difference ϕ − ϕ̂.
• The curves for the entropy and enthalpy were obtained by Equations (36) and (39), respectively.

This required the use of Equation (46) first, so that we knew ϕ̂(p; T, Ω). The derivative term
was approximated by -(kT/p1)(∂p/∂T)ϕ̂,Ω ≈ −(kT/p1)(Δp/ΔT) which was calculated from
two functions p(ϕ̂; T1, Ω) and p(ϕ̂; T2, Ω) for values of T1 and T2 not too far apart. The two
temperatures used were T1 = 1.080 and T2 = 1.165. The functions were obtained by inversion of
ϕ̂(p; T1, Ω) and ϕ̂(p; T2, Ω).

For all state properties of which the approximate value was calculated from two states,
i.e., from expressions containing finite difference terms such as Ω(Δϕ̂/ΔΩ)T,p, the association of
the value with a single state is somewhat arbitrary. If we label the states in the difference above as
Ω(Δϕ̂/ΔΩ) = Ω(ϕ̂2 − ϕ̂1)/(Ω2 − Ω1) we chose to assign the values to the state of ϕ̂1, Ω1. This means
that Ω = Ω1 in the expression. Another choice may be to assign the value to some mean of the states.
In the limit of infinitesimal differences, both choices give the same curves. The choice we made has
the advantage of being simpler to implement in software. However, if quantitative accuracy is the
main concern, the second choice may be more satisfactory.

In summary we acquired simulation data for a range of pressures and areas at two
different temperatures. We set the control parameters T, μ and Ω for each simulation and sampled
the gas pressure and density from the region of macroscopic gas properties. The total amount of the
adsorbate component was also sampled. The rest of the properties then followed by thermodynamic
relations. In each simulation the system was first equilibrated for a number of cycles that depended on
the state we were simulating. The properties of interest were monitored to make sure they fluctuated
around a steady value. This was followed by a number of cycles where samples for calculating
ensemble averages and errors were collected. The number of cycles varied with the state simulated,
and were chosen in each case such that the estimated error was less than 1.5% of the mean with 95%
confidence for all sampled properties and the calculated property Γ̄s. The strongest correlation between
samples was found in Γ̄s. This property therefore determined the number of cycles. In estimating the
standard error we accounted for correlation in the data by block analysis.

We analyzed the data using the scientific computing library SciPy [26], and created figures
using Matplotlib [27]. We interpolated the simulation data for the adsorption isotherms Γ̄s(p; T, Ω)

using univariate splines, constraining the splines to be linear for the lowest pressures according to
Henry’s law. We then extrapolated the linear region to zero pressure to allow the integration in
Equation (46). We evaluated the integral analytically for the lowest pressures, and numerically for the
remaining pressures.

5. Results

The calculated results are shown in Figures 1–4. The figures show ϕ, ϕ̂ and Es/Ω and other
thermodynamic properties as functions of the adsorbent area Ω at constant temperature and pressure.
All quantities are given in reduced units. Figures 1 and 2 are the results for the graphite adsorbent case.
Figures 3 and 4 are the results for the generic adsorbent case representing very small adsorbents with
strong interaction potentials. It is clear from the figures that all properties shown depend on the system
size (area). To place our experiment in context with macroscopic thermodynamics, consider an infinite
flat film adsorbed on a flat adsorbent. The intensive thermodynamic properties of this film do not
depend on the surface area. There is then no difference between the integral spreading pressure ϕ̂ and
the differential spreading pressure ϕ, and Es = 0. The results documented show that we are far away
from this limit, since there is an observable difference between integral and differential properties.
The systems can thus be considered as small in Hill’s sense.
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Figure 1 shows how the spreading pressures, ϕ and ϕ̂, and the subdivision potential depend
on system size for the graphite adsorbent case. The area range corresponds approximately to an
adsorbent radius between 6 and 25 ×10−10 m. We can see that the trend for ϕ and ϕ̂ has an initially
steep increase, after which the rate of increase goes down. At the upper limit of the area range there
is still a significant difference between ϕ and ϕ̂. The subdivision potential per unit area Es/Ω, or the
deviation from the corresponding macroscopic system, appears fairly constant; however, these results
are still consistent with the theoretical prediction that ϕ = ϕ̂ and Es approaches zero in the macroscopic
limit; see discussion below.
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Figure 1. Film properties ϕ, ϕ̂ and Es/Ω for the graphite adsorbent case as functions of the adsorbent
area Ω at constant temperature T = 1.080 and pressure p = 0.011. All quantities are given in reduced
units. For reference, the approximate values in SI units are T ≈ 250 K, p ≈ 1.05 MPa and adsorbent
radii are between 6 and 25 ×10−10 m. The markers indicate which adsorbent sizes were simulated and
the lines are there as visual aid.

Figure 2 shows the size dependence of the entropy and the enthalpy per film molecule relative
to the gas, and the difference Es/N̄s between the two as given by Equation (39) for the graphite
adsorbent case. We see that, in general, there is less entropy and enthalpy per film molecule as the
adsorbent becomes larger. The rate at which the properties decrease with increasing size goes down.
The difference Es/N̄s, or the deviation from the corresponding macroscopic system, decreases as the
adsorbent area becomes larger. This is expected.

Figure 3 shows how the spreading pressures, ϕ and ϕ̂, and the subdivision potential depend on
system size for the generic adsorbent case. We see that the general trend for all three curves is an initial
increase to an inflection point, after which the rate of increase goes down. At the upper limit of the
area range there is still a significant difference between ϕ and ϕ̂, and the subdivision potential per
unit area Es/Ω has not started to decrease towards zero at that point. However, the results are still
consistent with the theoretical prediction that ϕ = ϕ̂ and Es approaches zero in the macroscopic limit;
see discussion below. Special is a local deviation from the overall trend of the curves for adsorbent
areas 50 < Ω < 60. This is more clearly seen in the enthalpy and entropy curves of Figure 4 for the
same range of areas.

Figure 4 shows the size dependence of the entropy and the enthalpy per film molecule relative to
the gas, and the difference Es/N̄s between the two as given by Equation (39). We see that, in general,
there is less entropy and enthalpy per film molecule as the adsorbent becomes larger. The rate at which
the properties decrease with increasing size goes down. The difference Es/N̄s, or the deviation from the
corresponding macroscopic system, decreases as the adsorbent area becomes larger. This is expected.
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Figure 2. Film properties enthalpy, entropy and the subdivision potential per film molecule as functions
of the adsorbent area Ω at constant temperature T = 1.080 and pressure p = 0.011. Enthalpy and
entropy for a film molecule are given relative to the gas. All quantities are given in reduced units.
For reference, the approximate values in SI units are T ≈ 250 K, p ≈ 1.05 MPa and adsorbent radii are
between 6 and 25 ×10−10 m for the area range.
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Figure 3. Film properties ϕ, ϕ̂ and Es/Ω as functions of the adsorbent area Ω at constant temperature
T = 1.080 and pressure p = 1.8 × 10−4 for the generic adsorbent case. All quantities are given in
reduced units. For reference, the approximate values in SI units are T ≈ 250 K, p ≈ 50 kPa and
adsorbent radii are between 6 and 9 × 10−10 m. The markers indicate which adsorbent sizes were
simulated and the lines are there as a visual aid.

A local maximum in the entropy of the gas relative to the entropy of the film for adsorbent areas
50 < Ω < 60 is special, as is a corresponding maximum in the gas enthalpy relative to the film enthalpy.
The quantities are plotted as T(sG − ss) and hG − h̄s for convenience so that all quantities are positive.
Thus we observed a minimum in the film entropy relative to the gas ss − sG and a minimum in the film
enthalpy relative to the gas h̄s − hG. From the results, the areas around reduced units 55 appear special.
Compared to Figure 2 it appears that there is local deviation from the general trend in the curves
for the graphite adsorbent in this range of areas, but to a much smaller extent than for the generic
adsorbent. A thermodynamic analysis alone will not reveal any particular reason for such a behavior.
Several explanations can be thought of, as discussed below.
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Figure 4. Film properties enthalpy, entropy and the correction function per film molecule as functions
of the adsorbent area Ω at constant temperature T = 1.080 and pressure p = 1.8 × 10−4 for the generic
adsorbent case. Enthalpy and entropy for a film molecule are given relative to the gas. All quantities
are given in reduced units. For reference, the approximate values in SI units are T ≈ 250 K, p ≈ 50 kPa
and adsorbent radii are between 6 and 9 × 10−10 m for the area range.

6. Discussion

In the simulations we changed the size of the adsorbent while keeping the temperature and
chemical potential of the gas constant. As the gas is macroscopic, this is equivalent to controlling the
temperature and pressure. In effect, as long as the gas is macroscopic it is unaffected by the size of
the adsorbent. In cases where the gas is no longer macroscopic, such as in confinement, the gas phase
must also be treated as a small system where all three of the variables T, p and μ are independent.

When we increase the size of the adsorbent, there are two direct changes to the composite system:
(1) the strength of the external field increases, and (2) the surface becomes less curved. For the
present systems, the two changes were coupled to the size of the adsorbent, so we cannot isolate the
individual effects. However, if one would like to do so, one could study different adsorbent materials
at the same size.

The strength of the external field felt by an adsorbed molecule comes from integrating the
pairwise sum over all atoms that would constitute the adsorbent, resulting in Equation (55). Therefore,
an increase in the field strength is analogous to the introduction of more adsorbent atoms. This leads
to a larger total interaction energy for the film, but is to some extent counteracted by the fact that
with increasing size, a larger fraction of the adsorbent atoms would be at a greater distance from a
given adsorbed molecule. As the pair potential is inversely proportional to the separation distance by
u(r) ∝ r−6, the greater distance leads to a plateau in the total interaction energy in the large size limit.

To further discuss the effect of the presence of the adsorbent and its size on the film, we give an
illustration of four related systems divided into two groups. The first group consists of two systems
that have flat surfaces, while the second group consists of two systems with curved surfaces. In each
group one of the systems has the condensed phase in the presence of an adsorbent while the other
has a free condensed phase. The comparison of free and adsorbed systems within a group focuses on
the effects of the adsorbent, while the comparison of spherical and flat systems between the groups
focuses on the effects of size. We found the analogy of the systems in the second group to the more
simple systems in the first group helpful.

In the first case, consider a single-component bulk liquid with a flat surface, in equilibrium with
its own vapor. The nature of this system is completely characterized by the temperature. This means
that there is only one pressure p0(T) for a given temperature T at which the equilibrium state can exist.
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If we now extend the definition of the system and let the liquid be adsorbed onto a flat adsorbent
surface, the situation becomes different. If the pressure is below p0 for the given temperature, the phase
will start to evaporate. However, the evaporation will not necessarily continue until there is only gas
left. This is because the evaporation will reach a point at which the field of force from the adsorbent is
felt in such a way that no part of the phase maintains the properties of bulk. Beyond this point there is
a non-zero free energy change associated with adsorption/desorption, and the amount of adsorbed
material Γ̄s(T, p) may adjust to satisfy the equilibrium condition while T and p remain independent.
The condensed phase may therefore be in equilibrium with the vapor at pressures below p0.

Now consider the analogous case of a single-component spherical liquid droplet of area Ω∗

in equilibrium with its own vapor. The (unstable) equilibrium state is characterized by T and Ω∗.
This means that for a given temperature and area there is only one pressure p0′ > p0 at which
the equilibrium state can exist. The equilibrium pressure p0′(T, Ω∗) for this system is larger than
p0 due to the curvature and the Laplace pressure. If we let the liquid be an adsorbed phase on
a spherical adsorbent, as in our simulations, the situation changes again. The system has three
independent variables. The equilibrium state may be characterized by T, Ω and p as in Equation (21).
Compared to the droplet at the same temperature, we set the adsorption such that the two physical
systems are equal in size as characterized by Ω∗. There is one more independent variable to fix.
Therefore, unlike for the droplet we have many possible equilibrium pressures for a given adsorption
(as determined by Ω∗) if we let Ω be different in each case. In Figures 1–4 we have many adsorptions
for a given pressure because the area is different in each case. For given values of T and Ω there is
a limit pressure p0′ at which bulk condensation starts. This limit becomes lower for larger Ω until it
reaches p0 for a large flat adsorbent. In other words, a given adsorbent size imposes a limit on the
vapor pressure required for bulk condensation. This has previously been observed with a statistical
model [28]. As the limit changes with size, this implies that a change in size of the adsorbent for
p0 < p < p0′ may induce bulk condensation if p0′ drops below p. For p < p0 there is naturally no
adsorbent size that will induce bulk condensation. After bulk condensation starts, the saturation
pressure decreases gradually towards p0 because the curvature of the growing condensed phase
decreases and approaches zero.

To summarize, for the first system we only have to fix the temperature in order to fix the
equilibrium state. In the second system we have, in addition, to fix the pressure. In the third
system we have to fix the temperature and the area of the adsorbent. In the last system we have to fix
the temperature, the area and the pressure.

For our simulations the illustration above implies that for pressures p < p0, we may have a flat
and a spherical adsorbed film in equilibrium at the same temperature and pressure. They will in
general have different thermodynamic properties. For instance, the adsorption differs as discussed
above. By increasing the adsorbent size, the bulk condensation pressure limit approaches p0 from
above and the thermodynamic properties approach the values for a flat film. For pressures p > p0,
the spherical film may be in equilibrium but there is no possible corresponding flat system because
p0 < p0′ . An increase of adsorbent size may cause the bulk condensation pressure limit p0′ to pass
through p, at which point the adsorption diverges.

In Figures 1 and 3 the pressures are below p0 for the given temperature. We would therefore
expect the curves for ϕ and ϕ̂ to eventually coincide at the plateau value for a flat adsorbed film at the
given temperature and pressure. This occurs when the slope of the ϕ̂ curve is zero, which is consistent
with the relation ϕ = ϕ̂ + Ω(∂ϕ̂/∂Ω)T,p and Equation (44) as Es = 0. The curve for ϕ̂ in Figure 3 is
s-shaped and consistent with the approach to a plateau value. According to Equation (44), the s-shaped
curve of ϕ̂ gives a bell-shaped curve for Es/Ω, with a peak value at the inflection point of ϕ̂, and ending
at E/Ω = 0. The expected curve for ϕ would according to the relation ϕ = ϕ̂ + Ω(∂ϕ̂/∂Ω)T,p also
have a peak before decreasing towards the plateau value of ϕ̂. The same reasoning applies to Figure 1,
however the shapes of the curves are stretched out and harder to identify. Thus, although the eventual
decrease in Es towards zero is not observed for the limited area ranges in Figures 1 and 3, the results
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are consistent with the macroscopic limit relations ϕ = ϕ̂ and Es = 0. More experiments are needed
for further confirmations.

The trends in the entropy and enthalpy curves in Figures 2 and 4 are reasonable, when we
consider the discussion above on the change in total interaction energy with size. With a larger
interaction energy, the molecules are more tightly bound to the surface, and there are less possible
configurations of the system available. The adsorbed phase is then more ordered, and the entropy
becomes lower. In the macroscopic limit where the film is flat Es/N̄s = 0 and h̄s − hG = T(ss − sG)

by Equation (39). The trends of the curves for Es/N̄s are consistent with this. More experiments are
needed for further confirmations.

For the very small adsorbent with a strong interaction potential(cf. Figure 4), we can observe a
peak in the entropy and enthalpy, and there is a corresponding effect in Figure 3. A minimum in the
entropy of an adsorbed molecule, when plotted against the adsorption or pressure, is well known
in systems where the interaction of the adsorbate with the adsorbent is strong. This is related to the
decrease in the number of configurations available to the system as the first adsorption layer is filled
and a subsequent increase following the initiation of adsorption in a second layer. No film density
variation consistent with this was observed. The peak we see in Figure 4 was also observed for the same
areas for a range of different adsorptions, indicating that it does not have the same origin as discussed
above. These were observations from curves showing the same qualitative behavior but at different
pressures than the ones shown here. The start of the second layer was estimated by the location of the
minimum in the entropy when plotted against the adsorption (not shown here). The local minimum
we observe may thus best be related to available configurations of the system in other ways, such as
the change in structure and arrangement of the molecules on the surface. The type of entropy we
are showing in Figure 4 is the entropy per molecule Ss/N̄s (relative to the gas). As emphasized by
Hill [16], this type of entropy, as opposed to the differential entropy (∂Ss/∂N̄s)T,Ω is the correct one to
discuss in relation to the degree of order of the adsorbed molecules. More information on the spatial
arrangement of the adsorbed molecules may allow this question to be investigated further.

7. Conclusions and Perspectives

We have seen in this work how we can deal with size as a variable in a systematic manner.
The common thermodynamic equations for adsorption were changed in three ways.

Using the procedure of Hill, we have calculated the integral spreading pressure from adsorption
isotherm data for a fixed adsorbent size, using Equation (46). The equation has the same form as the
one usually encountered in adsorption thermodynamics, the integral form of Equation (26) in [13],
with the important distinction that ϕ̂ and ϕ in Hill’s description are not the same functions for small
systems. Equation (46) is valid for systems of any size.

Similarly, we have shown how to obtain the entropy and the enthalpy per film molecule by
Equations (36) and (39). Equation (36) is the same as the one usually encountered in adsorption
thermodynamics, Equation (21) in [13], except for the important fact that the function that is kept
constant when we take the derivative is now ϕ̂ instead of ϕ.

This entropy is the entropy typically discussed in relation to the degree of order of the
adsorbed molecules. Equation (39) differs from the usual equation by the term Es/N̄s. We observe that
for a small system h̄s − hG �= T(ss − sG) because Es �= 0. The expressions referred to above, become the
usual expressions in the macroscopic limit where Es = 0 and ϕ̂ = ϕ.

The effects of size on intensive variables is a feature of Hill’s nanothermodynamics [17], and may
be expressed in terms of Es and derivatives of Es by Equations (41)–(45). By the subdivision potential,
we have a direct measure of the system smallness, and we can see from the numerical data that the
value is significant in all relevant properties.

On this basis, we can suggest some possible directions for future work. The adsorbent may be
modeled explicitly as a collection of atoms instead of as an integrated potential. This may allow the
investigation of adsorption on a non-smooth surface with adsorption sites. By allowing the adsorbent
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to be compressible, it may be possible to observe how the film is affected by a phase transition
in the adsorbent for different sizes. By modeling the adsorbate as all-atom molecules instead of
coarse-grained particles, it may be possible to study changes in the molecular orientation and structure
of adsorbing layers induced by the adsorbent size.
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Abstract: The ideal gas model is an important and useful model in classical thermodynamics. This
remains so for small systems. Molecules in a gas can be adsorbed on the surface of a sphere. Both
the free gas molecules and the adsorbed molecules may be modeled as ideal for low densities.
The adsorption energy, Us, plays an important role in the analysis. For small adsorbents this
energy depends on the curvature of the adsorbent. We model the adsorbent as a sphere with
surface area Ω = 4πR2, where R is the radius of the sphere. We calculate the partition function
for a grand canonical ensemble of two-dimensional adsorbed phases. When connected with the
nanothermodynamic framework this gives us the relevant thermodynamic variables for the adsorbed
phase controlled by the temperature T, surface area Ω, and chemical potential μ. The dependence of
intensive variables on size may then be systematically investigated starting from the simplest model,
namely the ideal adsorbed phase. This dependence is a characteristic feature of small systems which
is naturally expressed by the subdivision potential of nanothermodynamics. For surface problems,
the nanothermodynamic approach is different, but equivalent to Gibbs’ surface thermodynamics.
It is however a general approach to the thermodynamics of small systems, and may therefore be
applied to systems that do not have well defined surfaces. It is therefore desirable and useful to
improve our basic understanding of nanothermodynamics.

Keywords: adsorption; nanothermodynamics; small-system; size-dependent; thermodynamics;
statistical mechanics; ideal gas; nanoparticles

1. Introduction

The objective of the paper is to demonstrate an organized and transparent thermo-
dynamic framework for statistical model development for small systems. The main focus
from the thermodynamic side is on the characteristic feature of small systems, namely the
effect of size on intensive variables.

We do this by first obtaining the characteristic thermodynamic function for the ad-
sorbed phase from nanothermodynamics as introduced by Hill [1–3]. This function is the
one that provides us with the fundamental link to statistical mechanics, as it is equal to −kT
times the logarithm of the grand canonical partition function. The characteristic function
for the adsorbed phase depends on the size Ω of the system. In the macroscopic limit the
dependence becomes linear, however when the system is small the subdivision potential
measures the deviation from macroscopic behavior. We therefore derive an expression for
the subdivision potential in terms of the environment variables, and observe that the differ-
ential coefficients of this expression give the dependence of particular intensive properties
on size. The size dependence of other intensive thermodynamic properties may then be
expressed through thermodynamic relations in terms of the subdivision potential and its
derivatives. The close relationship between the subdivision potential and the characteristic
feature of small systems is a consequence of the generalization of thermodynamics to
small systems, and the framework’s internal structure that follows. This is what we wish
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to emphasize in this work. For surface problems, the nanothermodynamic approach is
different, but equivalent to Gibbs’ surface thermodynamics [1,4,5].

Since the quantities usually referred to as intensive now depend on size, the classical
meaning of the term intensive is not appropriate for small systems. It is still a useful
term to distinguish thermodynamic quantities, especially since nanothermodynamics
is a generalization of classical thermodynamics, and therefore goes over into classical
thermodynamics in the macroscopic limit, where this term is ingrained. For a small system
quantity, the term intensive is used to describe a quantity that becomes intensive in the
classical sense in the macroscopic limit.

We give the thermodynamic framework substance by calculating the subdivision
potential of the adsorbed phase. Taking advantage of the simplicity of the ideal gas model,
the thermodynamic quantities become more tangible, and it is possible later to gradually
increase the complexity from this model to include effects like crowding and cooperativity.

The model consists of an adsorbed phase that is ideal and has an adsorption energy
Us. The adsorption energy Us will in general depend on the curvature of the sphere,
the temperature T and the chemical potential μ. However, we want the simplest model
possible, in order to make the connection between the nanothermodynamic framework
and statistical mechanics as clear and minimal as possible. We therefore consider Us to only
depend on Ω, which is consistent with an inert and incompressible adsorbent. The control
variables are therefore T, Ω, and μ. The dependence on the curvature is characteristic for
small spheres.

If the structure of the adsorbent is taken into account, and different crystal structures
are considered, this will result in different size dependence for the intensive variables of
the adsorbed phase. This is because the surface to volume ratio of the adsorbent becomes a
different function of size, and also because edges and corners will have to be considered.
This is interesting, but comes at the expense of increased complexity, and is beyond the
scope of the article.

2. Nanothermodynamics

The thermodynamic system considered here is the adsorbed phase in the context of
adsorption of a single component gas on an inert adsorbent. The adsorbent is assumed to
be unaffected by the temperature, chemical potential and the adsorbed layer. It functions
only as an external field, and is therefore not included in the description of the system. The
adsorbed phase is in equilibrium with the gas. The temperature T, chemical potential μ,
and surface area of the sphere Ω = 4πR2 form a complete set of independent variables
for the adsorbed phase. The surface area Ω determines the radius R =

√
Ω/4π and

the curvature C = 2/R. The curvature dependence of the surface tension can therefore
be written as a dependence on the surface area Ω. All thermodynamic quantities of the
adsorbed phase are functions of T, μ, and Ω.

Following Hill [2,3] we consider an ensemble of N independent small systems at
temperature T, and component chemical potential μ. A complete set of independent
variables for the ensemble, with total properties denoted by subscript t, may then be taken
as the entropy St, area NΩ, the amount of adsorbed component Nt, and the number or
replicas N . We note here that we allow for an independent variation in the size of the small
systems, as given by Ω, in addition to the variation in the number of small systems N .
This is an essential new feature that allows us to investigate the size of the small system
the ensemble represents, and which makes the approach distinct from simply describing a
large sample of small systems by conventional thermodynamics.

The characteristic function for the ensemble in terms of the set of independent variables
St, Ω, Nt, and N is the internal energy Ut given by

dUt = TdSt + γN dΩ + μdNt + XdN (1)
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where γ is the ensemble mean surface tension. We will refer to this equation as the
Hill-Gibbs equation. The intensive quantities are given by

T =

(
∂Ut

∂St

)
Ω,Nt ,N

, γN =

(
∂Ut

∂Ω

)
St ,Nt ,N

, μ =

(
∂Ut

∂Nt

)
St ,Ω,N

(2)

And finally we have the so-called replica energy

X =

(
∂Ut

∂N
)

St ,Ω,Nt

(3)

This energy is needed when one ads a replica with a surface area Ω while redistributing
the total adsorbed entropy and number of particles over one more replica. Using that Ut,
St, Nt are Euler homogeneous in the number of replica N ([2]), i.e., proportional to N , it
follows that

Ut = TSt + μNt + XN (4)

The internal energy, entropy and number of particles of the adsorbed phase per replica
are defined by

U ≡ Ut/N , S ≡ St/N , N ≡ Nt/N (5)

Apart from the entropy S the quantities defined in Equation (5) are ensemble mean
values of fluctuating extensive quantities ([2], p. 9), ([6], p. 98). For small systems, if a
quantity does not fluctuate, but has the same value in every system of the ensemble, it is an
environment variable. Here these variables are T, Ω and μ. The exception to this rule is the
entropy, which is a property of the complete distribution in internal energy and particle
number for a single system ([2], p. 9), and is therefore the same for each system. Together
with Equation (4) it follows that

γ̂Ω ≡ X = U − TS − μN (6)

This equation also defines γ̂, the characteristic energy per unit area. Substitution
of Equation (5) into Equation (1) and using Equation (6) gives the Gibbs equation for
the replicas

dU = TdS + γdΩ + μdN (7)

The important difference of this equation with the usual Gibbs equation is that U, S, N
are, for a small sphere, not Euler homogeneous in the surface area Ω, i.e., not proportional
to Ω. Differentiating Equation (6) and using Equation (7) we obtain what we call the
Hill-Gibbs-Duhem equation

d(γ̂Ω) = −SdT + γdΩ − Ndμ (8)

It follows from this equation that(
∂γ̂

∂T

)
Ω,μ

= − S
Ω

≡ −s,
(

∂γ̂

∂μ

)
T,Ω

= −N
Ω

≡ −n(
∂(γ̂Ω)

∂Ω

)
T,μ

= γ̂ + Ω
(

∂γ̂

∂Ω

)
T,μ

= γ (9)

We define the subdivision potential E by

E ≡ (γ̂ − γ)Ω (10)

While the form and physical significance of Equation (7) is the same for small and
large systems, we see by using Equations (6) and (10) that the Euler equation for a small
system takes a different form
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U = TS + γΩ + μN + E (11)

which shows the central role of the subdivision potential. Equation (7) together with
Equation (8) gives

dE = −SdT − Ωdγ − Ndμ (12)

Using the Gibbs-Duhem equation in the large surface area (thermodynamic) limit it
follows that E = 0 in this limit. This implies that γ̂ = γ in the thermodynamic limit.

Equation (12) shows furthermore that(
∂E
∂T

)
γ,μ

= −S,
(

∂E
∂γ

)
T,μ

= Ω,
(

∂E
∂μ

)
T,γ

= −N (13)

The intensive variables T, γ, μ determine all the extensive variables S, Ω, N. This is
possible for a small sphere, and is a feature specific to small systems. In the large sphere
limit S, Ω, N all become infinitely large. The change in the subdivision potential may be
written in a form more appropriate for the environment the small system is in

dE = Ω2
(

∂s
∂Ω

)
T,μ

dT − Ω
(

∂γ

∂Ω

)
T,μ

dΩ + Ω2
(

∂n
∂Ω

)
T,μ

dμ (14)

The effects of size on intensive variables, a characteristic feature of small systems,
are now directly available as the differential coefficients of Equation (14). This relation is
especially useful because the independent variables are the environment variables.

3. The Model

The one-particle canonical partition function for a small sphere with surface adsorption
follows from statistical mechanics [7]:

Q1(T, Ω) =
Ω
Λ2 exp(−βUs) (15)

where Us is the potential energy of interaction between the adsorbent and an adsorbed
molecule, Λ ≡ √h2/(2πmkBT) is the mean thermal de Broglie wave length. Here m is the
particle mass. The N-particle canonical partition function becomes:

Q(T, Ω, N) =
1

N!
QN

1 (T, Ω) (16)

The grand canonical partition function equals

Ξ(T, Ω, μ) =
∞

∑
N=0

exp(βμN)Q(T, Ω, N)

= exp(exp(βμ)Q1(T, Ω))

= exp
{

Ω
Λ2 exp[β(μ − Us)]

}
(17)

where we used Equation (16). By introducing the expressions above, thermodynamic
properties can be derived in terms of T, Ω, μ. From Equation (17) we find for the integral
surface tension

γ̂ = − kBT
Ω

ln Ξ(T, Ω, μ) = − kBT
Λ2 exp[β(μ − Us)] (18)

This is the equation of state for the adsorbed phase controlled by the grand canonical
ensemble. The differential surface tension is given by Equation (9)
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γ = − kBT
Λ2 exp[β(μ − Us)]

(
1 − βΩ

(
∂Us

∂Ω

)
T,μ

)
(19)

By using Equation (10), we can now determine the subdivision potential:

E = −
(

Ω
Λ2

)
exp[β(μ − Us)]Ω

(
∂Us

∂Ω

)
T,μ

(20)

In the thermodynamic limit Us becomes independent of Ω so that E approaches zero.
The entropy density s = S/Ω becomes using Equation (9)

s = (kB/Λ2) exp[β(μ − Us)][2 − β(μ − Us)] (21)

The particle density n = N/Ω becomes using Equation (9)

n = (1/Λ2) exp[β(μ − Us)] (22)

Thermodynamic quantities of the adsorbed phase may be expressed per molecule. The
quantities are then given by particularly simple expressions. It follows from Equations (18)–(22)
that

γ̂Ω
N

= −kBT (23)

γΩ
N

= −kBT + Ω
(

∂Us

∂Ω

)
T,μ

(24)

E
N

= −Ω
(

∂Us

∂Ω

)
T,μ

(25)

S
N

= kB[2 − β(μ − Us)] (26)

U
N

=
X
N

+ T
S
N

+ μ = −kBT + kBT[2 − β(μ − Us)] + μ = kBT + Us (27)

For the differential entropy and internal energy we have the model expressions(
∂S
∂N

)
T,Ω

=

(
∂s
∂μ

)
T,Ω

/( ∂n
∂μ

)
T,Ω

= kB[1 − β(μ − Us)]

(28)

(
∂U
∂N

)
T,Ω

= kBT + Us (29)

4. Correspondence with Experiment

Although comparisons with experimental results are not part of this work, the reader
may be interested in the relevant relations. Furthermore, the connection to experiment
may help make the description less abstract, so we allow ourselves this small detour here.
We are mainly interested in how the thermodynamic properties of the adsorbed phase
are affected when we vary Ω. The experimental system is typically a large collection of
spherical adsorbents, such as a powder, in equilibrium with the adsorbate gas. From
an experimental perspective, by using the environment variable Ω we imply that the
small system is rigid. This is because we do not have any direct means of controlling
the adsorbent size. We control the system experimentally through the surrounding gas.
Thus, if the adsorbent is not rigid, we cannot prevent the adsorbent size from fluctuating.
Instead we treat Ω as a variable parameter, and we control Ω by performing experimental
measurements on (monodisperse) samples prepared with different values of Ω.
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In order to assess the statistical model we may derive relations connecting thermody-
namic properties of the adsorbed phase to experimentally convenient variables, see [8,9],
and Appendix A. We may asses the adsorbed phase entropy and energy per molecule, and
the differential entropy and energy (all relative to the gas) by

S
N

− sG = −kT
(

∂ ln p
∂T

)
γ̂,Ω

(30)

U
N

− uG = kT

[
1 − T

(
∂ log p

∂T

)
γ̂
T ,Ω

]
(31)

(
∂S
∂N

)
T,Ω

− sG = −kT
(

∂ ln p
∂T

)
Ω,N

(32)

(
∂U
∂N

)
T,Ω

− uG = kT

[
1 − T

(
∂ log p

∂T

)
Ω,N

]
(33)

where sG ≡ SG/NG is the gas entropy SG per gas molecule NG, and uG ≡ UG/NG is the
gas internal energy UG per gas molecule. These are only a selection of relations that may
be useful.

5. The Potential Us

The adsorbent functioning as an external field was represented by a sphere of uniform
density ρ and radius a, see Figure 1. The total interaction energy U was determined
by integrating the interaction energy 4πρu(rLJ)a′2 da′ between a volume element of the
adsorbent, and a gas molecule separated by the distance rLJ . The interaction potential
u(rLJ) was given by the standard Lennard-Jones 12-6 potential:

u(rLJ) = 4ε

[(
σ

rLJ

)12
−
(

σ

rLJ

)6
]

(34)

where ε is the energy parameter of the interaction, and σ is the length parameter of the
interaction. We used reduced units; ε as the unit of energy, σ as the unit of length, the gas
molecular mass as the unit of mass, and kB = 1.

r

rLJ

a

Figure 1. Illustration of the adsorbent with radius a. The distance between a volume element of the
adsorbent and a gas molecule is given by rLJ , and the distance between the adsorbent center and the
same gas molecule is given by r.

Integrating Equation (34) over the spherical adsorbent we have

U (a, r) =
16περσ3

3

[(
15a3r6 + 63a5r4 + 45a7r2 + 5a9)σ9

15(r2 − a2)
9 − a3σ3

(r2 − a2)
3

]
, r > a (35)
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where r is the center to center distance between the adsorbent and a gas molecule. The
location of an adsorbed molecule relative to the center of the adsorbent is R, which is
determined by the control variable Ω by the equation Ω = 4πR2. Operationally it is more
practical to control a and determine Ω by a dividing surface condition involving a, than
it is the other way around. The correspondence between R and a is established by the
condition U (a, r = R) = min[U (a, r)], i.e., for a given adsorbent size a, the location R of the
dividing surface is the location of the minimum of the potential U . Thus, the adsorption
energy Us of an adsorbed molecule is determined by a, Equation (35), the fixed chosen
condition, and a fixed value of ρ. We choose ρ = 1/

([
4π(σ/2)3

]
/3
)

.

6. Results

In this section we present calculations for the ideal adsorbed phase to show the
size dependence of some important intensive properties, and give some substance to the
thermodynamic framework.

Figure 2 shows the integral surface tension γ̂ which is the characteristic energy per
unit area, the differential surface tension γ, and the subdivision potential per unit area
E/Ω, as functions of the adsorbent radius a at constant temperature and chemical potential.
The names integral and differential are here used to refer to the relation between γ̂ and γ in
Equation (9). The quantities γ̂, γ and E are calculated by Equations (18)–(20). We observe
that when the system becomes larger, E approaches zero, and γ̂ and γ both approach a
plateau value.

Figure 2. Adsorbed phase thermodynamic quantities per unit area at constant temperature and
chemical potential. The figure shows that when the system is small the characteristic energy of the
adsorbed phase per unit area depends on the size of the adsorbent. The transition from small to
macroscopic is continuous and may reasonably be considered to be beyond 50 σ for this system.

Figure 3 shows the characteristic energy per molecule, the energy γΩ per molecule,
and the subdivision potential per molecule E/N, as functions of the adsorbent radius a at
constant temperature and chemical potential. We observe that when the system becomes
larger, E approaches zero, and γ approaches the limit value −kBT. Here, the characteristic
energy per molecule follows the 2-dimensional analogue of the ideal gas law γ̂Ω = −nkBT.
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Figure 3. Adsorbed phase thermodynamic quantities per molecule at constant temperature and
chemical potential.

7. Discussion

As we are considering a two-dimensional ideal gas, or a dilute adsorbed phase with
free mobility, we expect the phase to follow the two-dimensional analogue of the ideal
gas law γ̂ = −nkBT. This is consistent with Equation (23) and Figure 3. When the
adsorbent size a approaches zero, the dividing surface radius R should approach the
potential minimum distance of the interaction between a single adsorbent atom and an
adsorbed molecule. This distance is 21/6σ for the Lennard-Jones potential. This is because
of the way we have defined R.

In the macroscopic limit the energy γΩ is a linear function of Ω. The tension γ
then becomes equal to the characteristic energy per unit area of the adsorbed phase, i.e.,
γ = (U − TS − μN)/Ω , for the environment T, Ω, μ. When the system is small γΩ
deviates from the characteristic energy by E , as shown by Equation (12). The integral
surface tension was therefore defined to represent this important quantity, i.e., γ̂ = (U −
TS − μN)/Ω = X/Ω. The tension γ is now given by the relation γ = ∂X/∂Ω. This
relation is always valid whether the system is small or large. It is only in the special
case of the macroscopic limit that the relation ∂X/∂Ω = X/Ω is true. The integral and
differential surface tensions are then equal. This way of stating the smallness is expressed
by Equations (9) and (10), which may be rewritten as

γ̂Ω
Ω

−
(

∂γ̂Ω
∂Ω

)
T,μ

=
X
Ω

−
(

∂X
∂Ω

)
T,μ

=
E
Ω

(36)

where E goes to zero in the macroscopic limit. Both γ̂ and γ are functions of the system size,
thus E measures the difference expressed by Equation (36), and not simply the difference
between the characteristic energy and the limit of γΩ.

The effects of size on intensive variables, characteristic of small systems, may be
expressed by the subdivision potential E and its derivatives, according to Equation (14). The
physical significance of E is more clear if we use the definitions E ≡ (γ̂ − γ)Ω = X − γΩ
and Ωt ≡ NΩ to rewrite Equation (1) as

dUt = T dSt + γ dΩt + μ dNt + E dN (37)
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An alternative definition of E is then

E ≡
(

∂Ut

∂N
)

St ,Ωt ,Nt

= − Ω
N
(

∂Ut

∂Ω

)
St ,Ωt ,Nt

(38)

By this definition, we see that E is the work required to increase the number of replicas
while keeping St, Ωt, and Nt constant. Since the total surface area is constant, it must be
redistributed across the new number of replicas. The area of each replica therefore becomes
smaller, which for a fixed shape means larger curvature. Thus, the subdivision potential
for the given system, with fixed shape, is also the work required to change the adsorbed
phase curvature while keeping St, Ωt, and Nt constant. If the process of adding a system to
the ensemble is at constant Ω instead of Ωt the work is given by X = γ̂Ω = γΩ + E .

When the intensive properties become independent of the curvature E = 0, which
is consistent with Equations (9) and (10). This occurs in the macroscopic limit, when the
adsorbent becomes large, which is consistent with Figures 2 and 3. All the differential
coefficients, expressing dependence of intensive properties on curvature, are then zero, and
dE = 0 by Equation (14). It also follows from these figures that a must be larger than 50σ
for E to become small.

8. Concluding Remarks

The above analysis shows that we can use the adsorbed phase as a small thermody-
namic system in the sense of Hill. The analysis for our ideal adsorbed gas model becomes
very simple. This allows the close relationship between the subdivision potential and the
dependence of intensive properties on size, and the internal structure of nanothermody-
namics to be seen more clearly.
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Appendix A

The Gibbs-Duhem relation for a single component homogeneous phase α is given by

dμα = −sα dTα + vα dpα (A1)

where sα ≡ Sα/Nα is the entropy per molecule, and vα ≡ Vα/Nα is the volume per
molecule. At chemical equilibrium the chemical potential μ of the adsorbed phase, and the
chemical potential μG of the gas phase are subject to the relations μ = μG and dμ = dμG.
The Gibbs-Duhem relation for the ideal gas may then be written as

dμ = −sG dT + kT d log p (A2)

where p is the equilibrium gas pressure, T is the equilibrium temperature, and superscript
G denotes the gas phase.
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Using Equations (6), (8) and (A2) we have

−(dX)/N − (S/N) dT + (γ/N) dΩ = −sG dT + kT d log p
S
N

− sG = −kT
(

∂ log p
∂T

)
X,Ω

= −kT
(

∂ log p
∂T

)
γ̂,Ω

(A3)

From Equation (8) and the definition F ≡ γ̂Ω + μN we have

dF = −S dT + γ dΩ + μ dN (A4)

From this equation we obtain the Maxwell relation(
∂μ

∂T

)
Ω,N

= −
(

∂S
∂N

)
T,Ω

(A5)

For variations in the adsorbed phase chemical potential at constant Ω and N, at
equilibrium with the gas, we then have

dμ =

(
∂μ

∂T

)
Ω,N

dT = −
(

∂S
∂N

)
T,Ω

dT = −sG dT + kT d log p(
∂S
∂N

)
T,Ω

− sG = −kT
(

∂ log p
∂T

)
Ω,N

(A6)

From Equation (6) and the equilibrium condition μ = μG we have

U − TS − X
N

=
UG − TSG + pVG

NG

= uG − TsG + kT
(A7)

where uG ≡ UG/NG is the gas internal energy per gas molecule. We also have from
Equation (8), using Equation (A7) to eliminate X/(TN):

dμ = − 1
N

dX − S
N

dT +
γ

N
dΩ

= − 1
N

d(TX/T)− S
N

dT +
γ

N
dΩ

= − T
N

d(X/T)−
(

X
TN

+
S
N

)
dT +

γ

N
dΩ

= −
(

X
TN

+
S
N

)
dT,

(
X
T

, Ω const.
)

=
uG − TsG + kT − U/N

T
dT,

(
X
T

, Ω const.
)

(A8)

Using dμ = dμG and Equation (A8) we obtain

uG − TsG + kT − U/N
T

dT = −sG dT + kT d log p

U
N

− uG = kT

[
1 − T

(
∂ log p

∂T

)
X
T ,Ω

] (A9)

126



Nanomaterials 2021, 11, 431

Using Equations (7), (A2), (A4) and (A7) we have

−
(

∂S
∂N

)
T,Ω

= − 1
T

(
∂U
∂N

)
T,Ω

+
μ

T

= − 1
T

(
∂U
∂N

)
T,Ω

+
uG − TsG + kT

T

−sG dT + kT d log p =

[
− 1

T

(
∂U
∂N

)
T,Ω

+
uG − TsG + kT

T

]
dT

kT
(

∂ log p
∂T

)
Ω,N

= − 1
T

[(
∂U
∂N

)
T,Ω

− uG − kT

]
(

∂U
∂N

)
T,Ω

− uG = kT

[
1 − T

(
∂ log p

∂T

)
Ω,N

]

(A10)
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Abstract: Two activated carbons (ACs) were prepared from peat using thermochemical K2SO4

activation at 1053–1133 K for 1 h, and steam activation at 1173 K for 30 (AC-4) and 45 (AC-6) min. The
steam activation duration affected the microporous structure and chemical composition of ACs, which
are crucial for their adsorption performance in the methane storage technique. AC-6 displays a higher
micropore volume (0.60 cm3/g), specific BET surface (1334 m2/g), and a lower fraction of mesopores
calculated from the benzene vapor adsorption/desorption isotherms at 293 K. Scanning electron
microscopy (SEM), X-ray diffraction (XRD), and small-angle X-ray scattering (SAXS) investigations of
ACs revealed their heterogeneous morphology and chemical composition determined by the precursor
and activation conditions. A thermodynamic analysis of methane adsorption at pressures up to
25 MPa and temperatures from 178 to 360 K extended to impacts of the nonideality of a gaseous phase
and non-inertness of an adsorbent made it possible to evaluate the heat effects and thermodynamic
state functions in the methane-AC adsorption systems. At 270 K and methane adsorption value of
~8 mmol/g, the isosteric heat capacity of the methane-AC-4 system exceeded by ~45% that evaluated
for the methane-AC-6 system. The higher micropore volume and structural heterogeneity of the more
activated AC-6 compared to AC-4 determine its superior methane adsorption performance.

Keywords: activated carbon; high-pressure methane adsorption; thermodynamics of adsorption
systems

1. Introduction

Storage of adsorbed natural gas (ANG) represents an effective alternative to the known techniques
of liquefied and compressed gas due to several reasons, such as high specific capacity, safety, and energy
efficiency [1–3]. In most studies, when choosing an adsorbent for an ANG system, the most crucial
criterion is the methane adsorption capacity [2–4]. Among adsorbents, activated carbons (AC) [2,4–8],
metal-organic frameworks (MOF) [5,9,10], and porous organic polymers (POP) [10,11] are the most
promising for use in ANG technology because of their high adsorption capacity of methane, which is
the major component of natural gas. It should be noted that the utilization of these materials for the
ANG storage systems implies that they meet the requirements imposed on these systems. Among these
requirements are chemical stability, mechanical strength, thermal stability, conductivity, minimized
affinity to water, and heavier natural gas components (ethane, propane, and butane), accessibility and
simplicity of the synthesis, and low costs of reactants and final product [2,9]. Although MOFs show
high promise in this area, their use in the loose powder form with low packing density produced
by most conventional synthetic techniques is not practical in the ANG systems, and, therefore, they
must be shaped [12,13]. Shaping or densification of MOFs may cause degradation of their porous
structure due to their low resistance against mechanical loads [14], which leads to a deterioration in
the methane adsorption capacity [15]. Moreover, Zhang et al. [16] found that the most promising
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HKUST-1 adsorbent lost 32% of its adsorption capacity over 200 sorption/desorption cycles due to the
irreversible blocking of almost half of the pore volume. However, despite the advances in developing
new synthetic technologies, the large-scale production of MOF- and POP-based adsorbents is limited
by a low level of reproducibility between different batches of final product and high costs of the
production process [10,12,17].

Therefore, for the foreseeable future, microporous ACs with their unique properties, such as high
thermal stability and mechanical strength [2,5,8], remain most suitable for the ANG storage technique.
Additional properties of ACs, which are essential for the ANG systems, are the high adsorption
capacity per unit volume, preferential adsorption of gas in the presence of moisture (hydrophobicity),
low resistance to gas flow, and complete release of adsorbates at increasing temperatures and
decreasing pressures [18]. As shown in the experimental study of methane adsorption in a series of
commercial (Maxsorb, Filtrasorb 400, NuCharRGC300) and laboratory synthesized ACs with various
pore size distribution and MOF (HKUST-1), a properly designed carbon adsorbent with an optimal
micropore/mesopore ratio demonstrates an excellent adsorption performance at high pressures without
any loss in the porosity [5].

When searching for an efficient carbon adsorbent for methane storage, an important criterion is
the availability of raw materials. Peat, matching this criterion, is a partially carbonized phytomass (up
to 61%), and it is considered a suitable raw material for the production of carbonaceous adsorbents
in terms of energy consumption and lows cost [19,20]. As a fossil raw material with an extensive
capacity, peat finds use as a precursor for the synthesis of promising adsorbents for many applications,
including ANG technology. From this standpoint, it is crucial to determine the influence of both raw
material and activation conditions on the porous structure, chemical composition, and morphology of
the final product—activated carbon—and its adsorption properties relative to methane. The adsorption
performance of a porous material with respect to a gas can be predicted based on the structural and
energy characteristics (SEC) calculated from data on standard vapor adsorption according to the
Dubinin theory of volume filling of micropores (TVFM) [21]. Therefore, it is essential to establish
a relationship between the methane adsorption capacity of peat-derived adsorbents and their SEC
values, which, in turn, are affected by chemical composition and morphology inherited from peat and
methods of their production [22].

It should also be noted that a proper design of ANG storage facilities operating within a wide
range of temperatures and at high pressures requires accounting for both the heat release/absorption
and deformation of an adsorbent upon the adsorption/desorption processes. These phenomena
have a significant impact on the thermodynamic characteristics of gas adsorption systems at high
pressures [23]. Many authors calculated the heat of adsorption by substituting various models of
adsorption [24,25] into the well-known Clausius–Clapeyron equation, in which an adsorbate in its
gaseous phase is endowed with ideal gas-phase behaviors.

An approach for calculating the thermodynamic functions of adsorption systems, which takes
into account the effects associated with the nonideality of an equilibrium gas phase and non-inertness
of an adsorbent at high pressures, has been developed by Bakaev [26,27]. Behind this approach
is the concept by Guggenheim that the thermodynamics of the adsorption equilibrium is rigorous
if the thermodynamic functions of an adsorption system are evaluated using only the quantities,
which are measured experimentally [28–30]. Using the methods of replacement of variables and
Jacobian-determinant in thermodynamics of adsorption equilibrium, Bakaev derived an equation,
which is recognized as a complete formula for calculating the differential molar isosteric heat of
adsorption [26]. This approach makes it possible to neglect the surface effects and avoid the difficulty
in interpreting adsorption data associated with the Gibbsian treatment of adsorption phenomena in
terms of interfacial excess amounts [31].

The applicability of the Bakaev equation was demonstrated by calculating the thermodynamic
functions characterizing the adsorption of gases (Xe, Kr, Ar, N2, O2, H2, CH4, CO2, and He) in
microporous adsorbents (zeolites and ACs) in a wide range of temperature and pressure [32–34]. It
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should also be noted that an analysis of thermodynamic parameters of an adsorption system, as a
function of pressure, temperature, and amounts of adsorbed methane, also provides information on
changes in the state of methane molecules in micropores [32]. Indeed, in [5], an advantage in the
performance of ACs in terms of the working capacity compared to HKUST-1 was attributed to a lower
isosteric heat of adsorption at the early adsorption stages.

The objective of the present work is to evaluate and compare the SEC values of two ACs, which
were produced from the same raw material as peat, but at different activation durations, from the
standard adsorption measurements by TVFM equations. The second task is to find a correlation
between the SEC values of the AC samples and data on their chemical composition and morphology
obtained by independent structural methods as X-ray diffraction (XRD), small-angle X-ray scattering
(SAXS), and scanning electron microscopy. Our study also focuses on the thermodynamic functions
derived qualitatively for methane adsorption in two peat-derived ACs measured at pressures up
to 25 MPa and over the temperatures from 178 to 360 K, i.e., both in sub- and supercritical states.
The data are essential for identifying the optimal thermal conditions of such a system, including the
charge/delivery processes.

2. Materials and Methods

2.1. Adsorbent

Shredded high-grade metamorphic peat from Central Russia (supplied by JSC Electrostal Research
and Production Association “Neorganika”, Electrostal, Russia) was used as a precursor for the
production of the activated carbons in three stages, including carbonization, thermochemical activation,
and steam activation.

After passing the preliminary treatment of crushing and separation, peat was impregnated
with potassium sulfide (K2SO4, > 99.0%, Sigma-Aldrich, St. Louis, MO, USA) and mixed to form a
homogeneous elastic paste. Afterward, the paste preform was pressed and granulated with the use of
extruding jets. The cylindrical granules thus obtained were dried and carbonized in a drum furnace at
the temperatures of 873−973 K in order to remove both the residual water and volatile compounds,
and decompose the peat organic matter.

Then the granulated material was activated in a rotary furnace at the temperature within a
range of 1053−1133 K for 1 h. At this stage, the volatile compounds were completely removed. As a
result, the material is enriched with carbon, which provides its mechanical strength and density. The
activation procedure gives rise to a porous structure in the carbonizate [20]. Due to the peculiarities
of the production process of carbon adsorbents from peat with the complex chemical composition,
the activated granules can contain up to 30 wt.% potassium, 10% sulfur, and up to 10 wt.% ash
components [35].

For this reason, the activated granules were cooled, and then they passed through a special
washing series including leaching with returned alkali solutions, washing in water and hot hydrochloric
acid (EKOS 1, Staraya Kupavna, Moscow Region, Russia), and a final rinsing with water. In the end,
the wet granules were placed into a tumble drier to reduce moisture content up to 3−5 wt.%.

As follows from [19,20,36], the optimal temperature of heat treatment of carbon-containing
biomass ranges from 1073 to 1173 K. In order to develop microporosity, the granules were subjected
to additional steam activation carried out in a reactor at 1173 K. It is known that at a particular
temperature of activation, weight loss due to burn-off (or degree of activation) increases with activation
duration producing micropores up to excessive activation, resulting in an increase in transport pores
and macropores [36,37] and a decrease in the characteristic energy of adsorption [21]. According
to [38,39], the burn-off of 30−40% matches the development of a maximum microporosity in activated
carbons. We attained these values at the activation times varied from 30 to 45 min. By using two
different activation duration, 30 and 45 min, we obtained two peat-based AC samples labeled as AC-4
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and AC-6, respectively. Due to the shorter duration of this stage, AC-4 had a lower degree of activation
compared to AC-6.

2.2. Adsorptive

The adsorptive gas used in the experiments was high purity (99.999%) methane. Methane has
the following physicochemical properties: molecular mass M = 16.0426 g/mol; boiling temperature
T0 = 111.66 K; critical temperature Tcr = 190.77 K; critical pressure Pcr = 4.641 MPa [40].

2.3. Methods

Porous characteristics of the activated carbons were estimated from the isotherms of benzene
standard vapor adsorption at 293 K measured by employing an original gravimetric vacuum adsorption
setup designed in IPCE RAS [41,42]. A maximal measurement error was± 0.19 mmol/g with a confidence
level of 99% determined according to [43]. A LOIP LT-411 thermostatic bath circulator and a LOIP
FT-311-80 cryostat (ultralow temperatures) were used for temperature control with an error of ± 0.01 K.
The SEC values of the carbons, such as a specific volume of micropores W0, standard characteristic
energy of adsorption E0, and effective half-width of micropores x0, were evaluated by applying the
Dubinin–Radushkevich (D-R) equation [21]. The Brunauer–Emmett–Teller (BET) method [44] was used
to calculate specific BET surface SBET from the data on benzene adsorption at 293 K with a benzene
molecular area of 0.40 nm2 for a flat molecular orientation in a monolayer [45]. The specific surface
area of mesopores (Smeso) was calculated from the benzene adsorption/desorption data using the
well-known Kiselev equation [46]. The specific mesopore volume was calculated as Wmeso =WS −W0,
where WS is the total pore volume calculated from the amount of benzene adsorption at the relative
pressure P/Ps = 0.99.

The surface morphology and elemental composition of mechanically ground AC-4 and AC-6 were
examined by scanning electron microscopy (SEM) using a Quanta 650 FEG microscope (FEI Company,
Hillsboro, OR, USA) equipped with an Oxford Energy Dispersive X-ray (EDX) detector operating at 30
kV accelerating voltage. The data on the elemental composition of both samples were obtained by
averaging ten measurements.

The phase composition of AC-4 and AC-6 was examined by powder X-ray diffraction (XRD)
with an Empyrean Panalytical (Panalytical BV) diffractometer in Bragg–Brentano geometry using
Ni-filtered CuKα-radiation (λCu = 0.1542 nm) in the 2θ angular range of 10–120 degrees. The samples
were ground to powder, and no binder was employed. The ICDD PDF2 database was used for phase
identification. The detailed qualitative analysis was carried out through the graphite characteristic
reflections—(002), (10), (100), (101), and (11).

The results from benzene adsorption analysis based on TVFM were compared with SAXS data on
the porous structure of ACs obtained at a SAXSess diffractometer (Anton Paar GmbH, Graz, Austria).
Powdered samples were measured in transmission geometry in a vacuum chamber. Monochromatic
Cu-Kα radiation and a 2D Imaging Plate detector were employed, and the range of scattering q vectors
was from 0.1 to 27 nm−1.

Methane adsorption equilibria on the AC-4 and AC-6 adsorbents were studied within a range
of pressures from 5 Pa to 25 MPa and at the temperatures varied from 178 to 360 K by the
volumetric-gravimetric method using three original adsorption devices developed in IPCE RAS
and described in detail in our previous works [47–49]:

• a semi-automatic adsorption weight vacuum unit (from 5 Pa to 0.1 MPa, gravimetric method;
accuracy of ± 1.5%) [47];

• a universal adsorption-dilatometer setup (0.1−6 MPa, volumetric method, accuracy of ± 3%) [48];
• an original volumetric-gravimetric high-pressure set-up (0.2−25 MPa, accuracy ± 5%) [49].
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The values of methane adsorption a were determined as the total content of adsorbed methane in
micropores of an adsorbent:

a = (V −Va)ρg/m0 (1)

where V is the total geometric volume of the system, Va is the volume of an adsorbent with micropores,
ρg is the density of gaseous phase at given pressure P and temperature T, m0 is the mass of a regenerated
adsorbent. As follows from the data below, the specific surface of mesopores in both adsorbents
constituted no more than 10% of the total specific surface, and therefore, one can neglect the adsorption
processes in mesopores. When calculating the value of methane adsorption a, the volume of adsorbent
with micropores was determined as a sum of the volume of this adsorbent determined via helium
pycnometry, VHe, and product m0·W0, where micropore volume W0 is evaluated from the data on
benzene adsorption at 293 K using the D-R equation [21].

3. Results and Discussion

3.1. Structure and Morphology Characterization

In order to reveal the influence of the activation time on the porous structure of the peat-derived
carbon adsorbents, the SEC values and the other parameters characterizing mesopores for AC-4 and
AC-6 summarized in Table 1 should be compared.

Table 1. The parameters of the porous structure of the peat-derived activated carbons.

Sample E0, kJ/mol W0, cm3/g x0, nm SBET, m2/g Wt, cm3/g
Smeso,
m2/g

Wmeso,
cm3/g

AC-4 20.6 0.48 0.58 957 0.72 105 0.24
AC-6 19.1 0.60 0.63 1334 0.70 96 0.10

As follows from Table 1, the steam activation duration had a significant impact for developing
the microporosity. It should be noted that ceteris paribus, the additional time of activation of AC-6
was responsible for the development of a specific BET surface through the enlargement of micropores
without the formation of a noticeable amount of mesopores. The AC-4 sample is characterized both by
the higher energy of adsorption and the proportion of mesopores in the total pore volume compared
to AC-6. One can expect that the differences in the porous structure of these two ACs manifest in
variations in the methane adsorption capacities.

The SEM images (Figure 1a,b) allowed for a qualitative assessment of the surface morphology
of AC-4 and AC-6. The images indicate that the carbons are not homogeneous in density. As
can be seen from the comparison of Figure 1a,b, the heterogeneous surfaces of the AC-4 and AC-6
powders are characterized by different proportions of relatively dark (dense carbon phase) and light
(relatively low-dense carbon phase) areas. The steam activation stage implies a partial burning-off of a
non-graphite amorphous phase associated with the light areas in the SEM images. Therefore, the SEM
image of more activated AC-6 shows fewer light inclusions compared to AC-4.
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Figure 1. Scanning electron microscopy (SEM) images of the peat-derived AC-4 (a) and AC-6 (b)
adsorbents. The scale bar is 40 μm.

The heterogeneous surface morphology of the peat-based adsorbents correlates with the SEM-EDX
data on their elemental chemical composition given in Table 2. The diverse chemical composition
of the adsorbents is reliant on the precursor (peat), activation process, and activating agent (K2SO4).
Therefore, besides the relatively high percentage of oxygen, especially in AC-6 (see Table 2), the
chemical composition of both carbon adsorbents also includes such heteroatoms as Si, Al, Ca, Fe,
the presence of which can be attributed to ash and plant residues decomposed under peat-forming
geochemical processes [35]. Potassium and sulfur are residuals of the activating agent.

Table 2. Elemental chemical composition of the peat-derived activated carbons.

Sample
Elements (wt.%)

C O K S Si Al Cl Ca Fe Mg B

AC-4 74.9 10.7 0.8 3.0 2.4 0.6 0.6 1.4 0.3 0.18 4.9
AC-6 60.8 23.7 0.5 1.7 10.2 1.2 0.6 1.3 - - -

As seen from Table 2, the percentages of carbon in both peat-based adsorbents are less than that
found for commercial peat-based Sorbonorit 4 (Norit Ltd., Netherland): 95 wt.% [50], and close to the
data for the peat-based ACs prepared via a one-step steam activation process (64−91 wt.%) reported
in [51].

When comparing the data on the elemental chemical composition of AC-4 and AC-6 in Table 2,
one can conclude that the increase in the steam activation time reduced the relative amounts of carbon,
potassium, and sulfur. In AC-6, metal impurities such as Fe and Mg were not found. At the same time,
the percentage of unremovable Si and O increased. Thus, the higher activation time of AC-6 caused
the higher oxygen/carbon (O/C) ratio: ~0.39 compared to AC-4 (O/C = 0.14).

The presence of heteroatoms (O, K, S, etc.), which form surface functional groups, largely
determines the surface chemical characteristics of the carbon adsorbents, thereby affecting their
interactions with adsorptive, and as a consequence, the adsorption process, especially in the early
stages of adsorption.

The analysis of powder XRD patterns for both samples (see Figure 2) revealed the pronounced
reflections related to carbon species in hexagonal graphite lattice and quartz. The graphite crystallites
are likely inherited from peat with a variable degree of thermal metamorphism.
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Figure 2. X-ray diffraction (XRD) patterns for the peat-derived activated carbons: AC-4 and AC-6.
Dashed lines show the primary reflections of graphite and quartz.

The activation stages promoted the growth and subsequent ordering of the crystalline phases
to a certain limit. But over this limit of activation, the peak shapes are somewhat broadened, and
their intensity is lowered (compare AC-4 and AC-6), which is indicative of a more amorphous and
non-graphitized structure in AC-6. Moreover, the strength of the diffraction intensity of AC-6 at low
angles is more significant compared to that of AC-4, which is consistent with a higher density of pores
in AC-6 (see Table 1) [52].

As shown in [53,54], SAXS is able to provide topological information from the molecular to
mesopore scale, regardless of the sample crystallinity. Characterization of the carbons by SAXS is
shown in Figure 3.

Figure 3. The log-log plot of scattering intensities versus scattering vector q for the peat-derived
activated carbons obtained at different steam activation times.

The linear log-log Guinier plots of the scattering intensity I on the scattering vector q in the
region between 2 and 8 nm−1 (marked as III in Figure 3) indicate scattering by a monodisperse
system [53,54]. Therefore, the values of radius of gyration used for estimations of pore sizes, RG, can be
calculated with the use of the tangent method and Guinier formula for a slit-like model of pores [55]:
q2I(q) = I0·exp [−RG

2q2]. We found that the values of RG for AC-4 and AC-6 are close enough to each
other: 0.48 and 0.50 nm, respectively.

When analyzing the experimental SAXS data for the carbons under study (see Figure 3), we
need to compare them with an empirical relationship proposed by Dubinin with coworkers for
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carbon adsorbents with relatively homogeneous chemical composition and narrow slit-like pore size
distribution [56–58]:

E0RG = 14.8± 0.6 kJ·nm/mol (2)

where E0 is the characteristic energy of adsorption determined from the adsorption of standard benzene
vapors (see Table 1) and RG is the radius of gyration of micropores evaluated from the SAXS data.

We found that the values of E0·RG determined for AC-4 and AC-6 (10.3 and 9.1 kJ·nm/mol,
respectively) differ markedly from that in Equation (2). Since the magnitudes of E0 for AC-4 and AC-6
from the adsorption data are typical for microporous adsorbents [see, for example, Reference [32]],
we attribute this deviation to an effect of the multi-component chemical composition of peat on the
formation of turbostratic carbon nanocrystallites in the final ACs. As a consequence, the variation in
the sizes and shapes of carbon nanocrystallites over the sample plus the amorphous phase detected by
XRD made it impossible to describe the porous system using a particular model of pore shapes for
correct evaluation of gyration radius RG from the SAXS data. Thus, the surface chemistry of ACs can
be a crucial feature of novel peat-based adsorbents and should be taken into account when developing
new adsorption systems. Undoubtedly, the structural data only for two samples are insufficient to
establish an unambiguous correlation between the SEC quantities and real structural properties of ACs.
Nevertheless, these new findings contribute to establishing a general pattern needed for the synthesis
of adsorbents with tailored structure.

3.2. Methane Adsorption on the Peat-Derived Carbon Adsorbents

Figure 4 presents experimental isotherms of methane adsorption in AC-4 and AC-6 at the
temperatures varied from 178 to 360 K and pressures up to 25 MPa.

Figure 4. Dependences of methane adsorption in AC-4 (a) and AC-6 (b) on pressure at temperatures,
K: 178 (1), 216 (2), 243 (3), 273.15 (4), 300 (5),320 (6), 340 (7); 360 (8). Experimental data are shown by
symbols, and lines are the approximation of experimental data by Equation (3).

We used a formula derived by Bakaev for the total adsorption isotherm [59] to fit the experimental
data shown in Figure 4a,b:

a(P) =
k0

(
k1P + 2k2P2 + 3k3P3

)
1 + k1P + k2P2 + k3P3 (3)

where k0 characterizes an adsorption system, k1, k2, k3 are the temperature-dependent and numerically
adjusted coefficients, and P is the equilibrium pressure expressed in Pa.

Equation (3) was successfully used for describing the adsorption process in various adsorbents,
including zeolites [59], polymer sorbents [60], and ACs [61]. In our case, the maximum regression
error did not exceed 3%, which made it possible to calculate a set of adsorption and thermodynamic
parameters of the systems with high accuracy.
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It can be seen from Figure 4a,b that over the entire range of temperatures and pressures, the more
activated AC-6 with a large volume fraction of micropores shows a higher adsorption capacity for
methane compared to AC-4.

Figure 5a,b demonstrate the isosteres of methane adsorption in AC-4 and AC-6, which were
calculated from the isotherm of methane adsorption shown in Figure 4a,b.

Figure 5. The isosters of methane adsorption in AC-4 (a) and AC-6 (b) at the values of methane
adsorption, mmol/g: 0.1 (1); 0.5 (2); 1.0 (3); 2.0 (4); 3.0 (5); 4.0 (6); 5.0 (7); 6.0 (8); 7.0 (9); 8.0 (10); 9.0 (11);
9.5 (12). Symbols mark the experimental data, and the solid straight lines show the linear function
approximation. The bold dashed line shows lnPs, where Ps is the saturated vapor pressure; the dashed
lines show the critical pressure and temperature of methane.

As follows from Figure 5a,b, the isosteres of methane adsorption in AC-4 and AC-6 plotted in
lnP = f (1/T) coordinates are well approximated by linear functions. No deviation from the straight
lines was observed when passing through the critical temperature of Tcr = 190.77 K to the nonideality
of a gaseous phase. The linearity of adsorption isosteres in the region, where gases show a significant
deviation from ideality, is indicative of a specific state of a highly dispersed substance in micropores.
This state enables the accumulation of methane in micropores without undergoing any phase transition
over wide intervals of sub- and supercritical temperatures and pressures [62].

3.3. Calculation of Thermodynamic Functions of Adsorption Systems

3.3.1. Differential Molar Isosteric Heat of Adsorption

The differential molar isosteric heat of adsorption, qst, is an important thermodynamic parameter,
which describes the heat effects of adsorption processes [26,27,30,32–34]. By definition [30], the value
of qst is determined as the difference between the molar enthalpy of equilibrium gaseous phase hg and
differential molar enthalpy of adsorption system H1:

qst = hg −H1 (4)

As noted above, the study was intended to consider the effects associated with the nonideality of
a gaseous phase and non-inertness of an adsorbent in terms of the approach by Bakaev [26]. Therefore,
we calculated the differential molar isosteric heat of adsorption using an equation:

qst = −R·Z·
[
∂(lnP)
∂(1/T)

]
a
·
[
1−

(
∂Va

∂a

)
T

/νg

]
−

(
∂P
∂a

)
T
·
[
Va − T·

(
∂Va

∂T

)
a

]
(5)

where Z = P·νg/(RT) is the coefficient of compressibility of the equilibrium gas phase at pressure P
(Pa) and temperature T (K); νg is the specific gas phase volume, m3/kg; R is the universal gas constant,
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J/(mol·K); Va = V0/m0 is the reduced volume of the adsorbent-adsorbate system, cm3/g; and V0 and m0

are the volume and mass of the regenerated adsorbent, respectively. Thus, the Bakaev Equation (4)
most fully takes into account the factors which affect the value of differential molar isosteric heat of
adsorption: adsorption isothermal deformation (∂Va/∂a)T, temperature isosteric deformation (∂Va/∂T)a,
the slopes of the isotherm of adsorption (∂P/∂a)T and isosteres [∂lnP/∂(1/T)]a, and the nonideality of a
gas phase Z [26,27].

It was shown in [33] that in the conditions under consideration, the corrections for adsorption
deformation of carbon adsorbents upon methane adsorption is minimal (~2–3%) and can be ignored
in calculating qst. The data reported by Novikova [63] enabled us to evaluate the maximal value of
isosteric temperature deformation (∂Va/∂T)a and show that the term T·(∂Va/∂T)a is much lower than
Va in the studied temperature and pressure range. Therefore, we used Equation (5) without corrections
for the adsorption-stimulated and thermal deformations of adsorbent:

qst = −R·Z·
[
∂(lnP)
∂(1/T)

]
a
−

(
∂P
∂a

)
T
·Va (6)

Figure 6a,b show the functions qst = f (a)T for AC-4 and AC-6 calculated from the experimental
isotherms of methane adsorption following to Equation (6) for different temperatures.

Figure 6. The differential molar isosteric heat of adsorption versus the value of methane adsorption in
AC-4 (a) and AC-6 (b) at temperatures, K: 178 (1), 216 (2), 243 (3), 273.15 (4), 300 (5), 320 (6), 340 (7), 360
(8). Symbols show experimental data; solid curves are the results of approximation by Equation (6).
The error bar is 10%.

The dependences of qst(a) shown in Figure 6a,b are determined by the changes in the methane
adsorption mechanisms in ACs as micropores become filled. Indeed, as can be seen from Figure 4a,b,
at low pressures (up to 1 Pa), the carbon adsorbents tend to strongly adsorb methane molecules, which
occupy a large portion of micropores by binding to high-energy adsorption sites. The high-energy
micropores with a width close to the adsorbate molecule diameter with very high adsorbent fields
and surface functional groups serve as such adsorption sites. For example, the snapshots and density
profiles obtained upon the Grand Canonical Monte Carlo (GCMC) and Molecular Dynamics (MD)
simulations of adsorption and dynamic behaviors of methane in the interior of constricted slit models
of carbon adsorbents [64] provided evidence that at low pressures methane was adsorbed in the slits
with a constriction width close to the molecular diameter, where one layer of adsorbed methane was
formed. At low adsorbate loadings, the absolute value of qst depends on the density of adsorption sites,
which are the high-energy micropores and heteroatoms, including metal ions. The latter is associated
with electrostatic interactions, which are likely to be of minor importance for methane, which has
no dipole or quadrupole moments. In any case, the summary effect of these factors determines the
lower value of qst found for AC-6 (~20 kJ/mol) compared to AC-4 (~24 kJ/mol). AC-4 differed by a
smaller percentage of narrow micropores (see Table 1) and lower content of oxygen than AC-6. Unlike
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AC-6, it contains metal ions (see Table 2). According to atomistic simulations [65], a steep initial
decrease in qst with a observed in AC-4 is conventionally attributed to heterogeneity in the adsorbent.
More precisely, it occurs when the pore size distribution is skewed towards the large pore width, as
in the case of AC-4. The reduced slope of qst = f (a) observed at higher values of micropore loading
for both adsorbents is likely a result of overlapping the impacts from the adsorbate−adsorbent and
adsorbate−adsorbate interactions [65]. When the adsorbate−adsorbate attraction tends to dominate
upon the process of methane accumulation, they lead to the formation of adsorption associates of
methane molecules in micropores [62,66]. As a result, the heats of methane adsorption in AC-4 and
AC-6 come closer together.

As follows from Figure 6a,b, the isosteric heat of adsorption is temperature-independent in the
early stages of adsorption. However, with the increase in the value of adsorption, the curves qst = f (a)T

fall as the high-energy adsorption sites become occupied, and the rate of fall of the curves depends on
temperature. Therefore, one can observe a so-called “fan” of the curves, each of which correspond to a
particular temperature (see Figure 6a,b). With a further increase in pressure, the curves describing
the dependency of heats of adsorption diverge according to Equation (5) due to the variations in
the temperature-dependent contributions from the compressibility of the gas phase Z and derivative
(∂P/∂a)·Va related to the steepness of the adsorption isotherms in the a-P coordinates.

3.3.2. Integral Heat of Methane Adsorption in the Activated Carbons

The methane adsorption/desorption processes are accompanied by the release/absorption of a
large amount of heat, which degrades the storage capacity of ANG systems. These thermal effects are
estimated by the values of integral heat of adsorption Q:

Q(T) =
∫ a

0
qst(a)T=constda (7)

The integral heats of methane adsorption in AC-6 and AC-4 were calculated from the obtained
data on isosteric heats of adsorption. The values of Q were used to evaluate the value of ΔT, which is a
variation in temperature upon the heating-up/cooling of a 50 L model ANG system filled with AC-4 or
AC-6 under adiabatic conditions. In the calculations, we used the specific heat capacity of activated
carbons of 0.84 kJ/(kg·K) [67]. Table 3 summarizes the results of the calculations.

Table 3. Thermodynamic characteristics of the adsorbed natural gas (ANG) systems based on AC-4
and AC-6.

AC T, K 178.00 216.00 243.00 273.15 300.00 320.00 340.00 360.00

AC-4

P, MPa 1.0 3.4 6.2 5.1 13.0 16.0 18.0 23.0
a,

mmol/g 9.6 9.6 9.2 8.1 9.0 8.7 8.3 8.3

Q, kJ/kg 141.4 135.8 126.6 115.9 116.9 110.4 104.1 99.3
ΔT, K 58.8 51.9 45.2 46.0 39.4 37.0 35.2 32.6

AC-6

P, MPa 1.0 4.0 5.7 5.5 15.0 19.0 21.0 23.0
a,

mmol/g 11.9 11.9 11.0 10.0 11.1 10.9 10.4 10.1

Q, kJ/kg 182.1 174.1 159.4 147.7 149.3 140.9 133.8 128.1
ΔT, K 69.3 58.6 53.8 53.6 44.4 41.4 40.0 38.7

According to Table 3, the increase in temperature produced a decrease in the values of Q. The
methane adsorption process in the ANG system based on AC-6, which is the more active adsorbent
for methane, is accompanied by the release of a more significant amount of heat compared to that for
AC-4. Additionally, the data in Table 3 testify that the heating-up of the ANG system is maximal under
adiabatic conditions and low temperatures. At 178 K, ΔT achieved 69 and 59 K for the ANG systems

139



Nanomaterials 2020, 10, 1379

based on AC-6 and AC-4, respectively. With increasing temperature, the heating-up reduces: at 360 K,
ΔT is 39 and 33 K for the ANG systems based on AC-6 and AC-4, respectively.

3.3.3. Differential Molar Isosteric Entropy of the Methane-AC Adsorption Systems

The entropy of adsorption system S1 is an essential thermodynamic state function, which gives
insight into the state of adsorbate molecules in micropores, including their interactions in adsorption
associates and with the adsorbent. The isosteric molar entropy of an adsorption system S1 can be
calculated using a formula derived from Equation (4) relative to the equilibrium gas phase:

S1 = sg − qst

T
(8)

Figure 7a,b show the calculated values of differential molar entropy of the adsorption systems
based on AC-4 and AC-6.

Figure 7. The differential molar entropy of the methane-AC-4 (a) and methane-AC-6 (b) adsorption
systems versus the values of methane adsorption at temperatures, K: 178.00 (1), 216.00 (2), 243.00 (3),
273.15 (4), 300.00 (5), 320.00 (6), 340.00 (7), and 360.00 (8). Symbols indicate the experimental data; solid
lines are the smoothing spline curves. The error bar is 10%.

Figure 7a,b demonstrate a steep initial decrease in the entropy at a < 0.5 mmol/g, which is
attributed to the occupation of the most strongly adsorbing sites. In the region of intermediate values
of adsorption, from 1 to 7 mmol/g, the decrease in the entropy slows down due to further loading of
micropores and the formation of the adsorption associates caused by increasing mutual attraction
between adsorbate molecules [66]. When micropore fillings are high, a sharp rise in curves S1(a) is
observed, which can be interpreted as a result of the rearrangement of the adsorbate structure, leading
to the formation of the denser methane associates. As was shown in [32,33], a further increase in
methane adsorption leads to a weak local peak followed by a drop in the entropy at high fillings
of micropores. These variations in the entropy are indicative of the completion of the formation of
adsorption associates and subsequent rearrangement of adsorbed molecules caused by the increased
repulsion between them.

3.3.4. Differential Molar Isosteric Enthalpy of the Methane-AC Adsorption Systems

The enthalpy of an adsorption system, H1, is a thermodynamic state function, which determines
an amount of energy, which the system can potentially transform into heat—in other words, the heat
content:

H1 = hg − qst (9)

Figure 8a,b shows the results of the calculation of H1 for the studied adsorption systems at
different temperatures.
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Figure 8. Dependence of the differential molar isosteric enthalpy of the methane-AC-4 (a) and
methane-AC-6 (b) adsorption systems on the value of adsorption at temperatures, K: 178.00 (1),
216.00 (2), 243.00 (3), 273.15 (4), 300.00 (5), 320.00 (6), 340.00 (7), and 360.00 (8). Symbols indicate the
experimental data; solid lines are the smoothing spline curves.

As follows from Figure 8a,b, the enthalpy is dependent on temperature, and this dependence
becomes stronger with the increase in the micropore fillings. The negative values of enthalpy H1 are
determined by the reference level accepted for the standard state of the gas phase—hg.

Figure 9a,b shows the temperature dependences of differential molar enthalpy of the methane-AC-4
and methane-AC-6 systems at various values of adsorption.

Figure 9. Temperature dependence of the differential molar enthalpy of the methane-AC-4 (a) and
methane-AC-6 (b) adsorption systems at the values of adsorption a, mmol/g: 0.1 (1), 0.3 (2), 0.6 (3), 1 (4),
1.5 (5), 2 (6), 3 (7), 4 (8),5 (9), 6 (10), 7 (11), 7.8 (12), 8.3 (13), 8.8 (14) (a) and 0.1 (1), 0.6 (2), 1 (3), 1.5 (4), 2
(5), 3 (6), 4 (7), 5 (8), 6 (9), 7 (10), 8 (11), 8.5 (12), 9 (13), 9.5 (14), 10.5 (15), 11 (16) (b).

Figure 9a,b shows that, at low loading, the enthalpy of these systems increases almost linearly,
which is caused by the temperature invariance qst � f (T) and the linear dependence of hg on temperature.
However, with the increase in the micropore fillings, the dependences H1(T) become nonlinear. The
rate of their growth, H1’(T), increases with temperature, which is determined by the contribution from
temperature-dependent compressibility of the gas phase Z and derivative (∂P/∂a)·Va in Equation (6)
for qst (see the fan of curves qst = f (a) in Figure 6a,b).

The variations in H1 with a and T obtained from the experimental data for both methane-AC
adsorption systems are consistent with those calculated for model micropores in many numerical
experiments. As was found in [68] by using the continuous fractional component Monte Carlo
algorithm, the growth of enthalpy at high micropore loadings close to saturation is caused by repulsive
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interactions arising between an introduced adsorbate molecule and both the previously adsorbed
species and the adsorbent. The appearance of these intermolecular repulsive forces leads to the
rearrangement of the adsorption associates.

3.3.5. Differential Molar Isosteric Heat Capacity of the Methane-AC Adsorption Systems

In contrast to the specific heat capacity of the bulk phase, the specific heat capacity of any adsorption
system is dependent not only on pressure, temperature but on the value of adsorption. Therefore, a
comprehensive thermodynamic description of an adsorption system includes the differential molar
isosteric heat of adsorption—Ca. The values of Ca were calculated using the Kirchhoff equation derived
by the differentiation of Equation (4) over the temperature:

Ca =

(
∂H1

∂T

)
a
=

(
∂hg

∂T

)
a
−

(
∂qst

∂T

)
a

(10)

Figure 10a,b shows the temperature dependencies of the differential molar isosteric heat capacities
of the methane-AC-4 and methane-AC-6 adsorption systems, respectively.

Figure 10. Temperature dependences of the differential molar isosteric heat capacities of the
methane-AC-4 (a) and methane-AC-6 (b) adsorption systems and the gas phase (numbering with
stroke) at the values of methane adsorption, mmol/g: 0.1 (1), 0.3 (2), 1.0 (3), 2.0 (4), 4.0 (5), 6.0 (6), 7.0 (7),
7.8 (8), 8.3 (9). The error bar is 30%.

Figure 10a,b shows that the heat capacity of the adsorption systems is identical in magnitude to
the isobaric heat capacity of the gas system (see 1, 2, 3, 4 and 1’, 2’, 4’ curves). However, when the
temperatures are above 220 K, the differences become more significant, and the heat capacity of the
adsorption system exceeds the values of Cp. Furthermore, with the increase in the methane adsorption
values and temperature, the heat capacity also increases. Moreover, the Ca(T) curves diverge more
strongly as the temperature increases.

As follows from Figure 10a,b, the isosteric heat capacities of the methane-AC-4 and methane
-AC-6 adsorption systems differ significantly from each other at the same adsorption values. Indeed,
at a ~ 8 mmol/g and 270 K, the isosteric heat capacity of the methane-AC-4 system is 45% more than
that in the adsorption system with AC-6. Therefore, one can conclude that the isosteric heat capacity
is lower when methane is adsorbed in AC-6 with a higher volume of micropores and less content of
carbon species compared to AC-4.

According to [32], which summarized the thermodynamic functions of a large number of
gas/microporous material adsorption systems, in most cases, the Ca(T) dependence exhibited a local
maximum at elevated temperatures. When adsorption achieved the high values, this maximum shifted
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towards lower temperatures, as was the cases of Xe [69] and CH4 adsorption [70,71] in NaX zeolites,
and CH4 adsorption in the microporous silicon carbide-derived activated carbon labeled as AUK [33].
Therefore, we suggest that these regularities are general and will be observed in the studied adsorption
systems with the increase in the values of methane adsorption, pressure, and temperature. Such
features of the Ca(T) dependences cannot be caused by the gaseous phase, since these dependencies
significantly diverge; for example, curves 7 and 7’. The adsorption-induced deformation of activated
carbon, which is the component of the adsorption system, is also not responsible for this effect, since
the changes in its crystal structure are imperceptible. The only logical explanation for this effect is a
change in the state of adsorbed molecules, namely the formation of adsorption associates in micropores,
which is confirmed by the results of molecular dynamics simulations [34,62,66].

4. Conclusions

The activated carbons were synthesized from peat of high degree of metamorphism in three
stages: carbonization, thermochemical K2S activation at 1053–1133 K, and steam activation at 1173
K. The stage of steam activation performed for two different periods resulted in two different AC
samples: AC-4 and AC-6. The data of SEM, X-ray, and adsorption investigations revealed that the
most activated carbon possessed the largest micropore volume and specific BET surface. The increase
in the activation time caused the changes in the chemical composition and crystallinity. A combination
of these changes determines a higher adsorption capacity of AC-6 with respect to methane. The results
indicate that a detailed comparative analysis of the adsorption performance, characteristics of porous
structure (SEC), and data on phase and chemical composition for activated carbons prepared from
various precursors under different activation conditions is needed to establish a precise correlation
between textural and adsorption behaviors. This correlation is essential for determining a criterium for
an optimal adsorbent for ANG storage.

The general thermodynamic equation by Bakaev made it possible to calculate the differential molar
isosteric heats of methane adsorption in AC-4 and AC-6 at pressures up to 25 MPa in the temperature
range from 178 to 360 K. The differential molar isosteric entropy, enthalpy, and heat capacity evaluated
as the functions of temperature and methane adsorption for both methane-AC adsorption systems
are affected by heterogeneous porous, phase and chemical structure of the adsorbents. It should be
noted that despite the differences in absolute values, the variations in the thermodynamic functions
with temperature and adsorption values reflect the general pattern of changes in the state of adsorbed
molecules upon the adsorption process in the heterogeneous microporous carbons: from binding with
the high-energy adsorption sites to the formation of the adsorption molecular associates, and their
subsequent rearrangement close to saturation.

The heating-up of both the ANG systems calculated from the integrated heat of adsorption
was found to be maximal under adiabatic conditions and low temperatures. The magnitudes of the
temperature changes of the ANG system based on AC-4 upon the adsorption (charging) process are
lower than those found for that with AC-6. When the temperature of the adsorption process grows,
the heating-up of both adsorption systems decreases.

The isosteric heat capacity of the methane adsorption system based on AC-4 with a lower degree
of activation and higher energy of adsorption exceeded that for the system with AC-6. When the value
of adsorption is close to 8 mmol/g, and the temperature is 270 K, the difference between the values of
Ca for the systems based on AC-4 and AC-6 amounts to ~ 45%.

Finally, the evaluation of the key thermodynamic quantities is essential for selecting an efficient
adsorbent, designing both the ANG systems and heat-exchange facilities to achieve the maximum of
both storage density and deliverable capacity.
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Abstract: We review and show the connection between three different theories proposed for the
thermodynamic treatment of systems not obeying the additivity ansatz of classical thermodynamics.
In the 1950s, Landsberg proposed that when a system comes into contact with a heat bath, its energy
levels are redistributed. Based on this idea, he produced an extended thermostatistical framework
that accounts for unknown interactions with the environment. A decade later, Hill devised his
celebrated nanothermodynamics, where he introduced the concept of subdivision potential, a new
thermodynamic variable that accounts for the vanishing additivity of increasingly smaller systems.
More recently, a thermostatistical framework at strong coupling has been formulated to account for
the presence of the environment through a Hamiltonian of mean force. We show that this modified
Hamiltonian yields a temperature-dependent energy landscape as earlier suggested by Landsberg,
and it provides a thermostatistical foundation for the subdivision potential, which is the cornerstone
of Hill’s nanothermodynamics.

Keywords: thermodynamics at strong coupling; temperature-dependent energy levels; thermodynamics
of small systems; nanothermodynamics

1. Introduction

Systems are always in contact with an environment that influences their energy, volume, and mass.
In certain cases, the presence of the environment is of little significance and, for simplicity, the system
may be described as though it were isolated. In other cases, surroundings significantly affect the
properties of systems, and external interactions need to be taken into account. Systems subject to
the latter scenario may be referred to as small, where small is not an attribute determined by the
system’s sheer size, but rather by how the size compares to the range of the interactions affecting the
system [1–3].

In contrast to their macroscopic analogues, small systems are non-extensive, and consequently,
also non-additive, i.e., the total system is not just a sum of its parts. Clearly, this lack of additivity
escapes the paradigms of classical thermodynamics, and a modified thermophysical theory is needed
to describe small systems.

In 1940, Rushbrooke proposed a novel statistical mechanical method to account for the
non-additivity of a system whose interactions with the environment are unknown [4]. This method,
which consisted on allowing the energy levels of the system to depend on the temperature of the bath,
was later refined by Landsberg in the 1950s [5,6]. In the decades that followed, Landsberg’s theory
of temperature-dependent energy levels was directly invoked to study the temperature dependence of
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energy gaps in semiconductors [7], as well as bosonic systems where the standard thermodynamic
description breaks down due to strong interactions [8,9]. Temperature-dependent energy levels
have since become ubiquitous in the study of semiconductors (see e.g., [10,11] and references
therein) and bosonic systems (see e.g., [12] and references therein). The theory has also been
applied to superconductivity [13], optomechanical oscillators [14], irreversible effects in thermoelectric
phenomena [15,16], small-system thermalization [17], and even information theory [18].

Despite the many applications of Landsberg’s framework, nobody used it to develop an alternative
thermodynamic theory for nonadditive systems. In fact, the first thermodynamic theory valid for
nonadditive systems did not appear until 1962, when Hill independently proposed his celebrated
thermodynamics of small systems [19,20], later termed nanothermodynamics [21–23]. In contrast to
Landsberg’s approach, Hill’s thermodynamic theory is not based on modified energy levels, but rather
on the introduction of a subdivision potential to account for nonadditive effects. Hill’s theory has
proven fruitful to describe nanoscale phenomena [24–29], and also the nonadditivity that occurs in
macroscopic systems subject to long-range interactions [2].

In recent times, Landsberg’s idea of a statistical mechanics with temperature-dependent energy
levels has covertly reappeared in a framework known as statistical mechanics at strong coupling [30].
This framework is based on the formulation of a Hamiltonian of mean force, which accounts for
environmental perturbations on the small system of interest [30]. This thermostatistical approach has
recently been applied to describe nanomechanical systems [31], nanoscale interfacial phenomena [3]
and the advent of negative thermophoresis [32].

In this work, we show that Landsberg’s physical theory of temperature-dependent energy
levels [6] is the foundation of the Hamiltonian of mean force upon which the recent statistical mechanics
at strong coupling [30] is based. Furthermore, we show that statistical mechanics at strong coupling
provides a thermostatistical foundation for the subdivision potential, which, as we shall see below,
is the cornerstone of Hill’s nanothermodynamics [20]. Although the inception and evolution of these
three powerful theories has been completely independent, and despite their apparent differences,
they are indeed indeed deeply connected.

The remainder of this paper is structured as follows. In Section 2, we show that Landsberg’s
theory of temperature-dependent energy levels lies at the heart of the Hamiltonian of mean force upon
which statistical mechanics at strong coupling is based. In Section 3, we show that statistical mechanics
at strong coupling provides a thermostatistical basis for the subdivision potential, the thermodynamic
variable upon which Hill’s nanothermodynamics is based. Concluding remarks are given in Section 4.

2. ‘Temperature-Dependent’ Energy Levels and the Hamiltonian of Mean Force

In 1940, Rushbrooke proposed a generalized statistical mechanics for assemblies whose energy-levels
depend on the temperature. His idea was that the physical state of either part of the assembly will depend
on the temperature, and thus so will its interaction with the other part of the assembly [4]. Rushbrooke’s
treatment was further generalized by Landsberg in the 1950s, when he applied the method to explore
the equilibrium properties of systems subject to unknown interactions with some environment [5,6].
In the following, we show that Landsberg’s theory leads to the Hamiltonian of mean force used in
statistical mechanics at strong coupling [30].

Landsberg’s theory may be summarized as follows. Considering an ensemble of systems at
temperature T, one may abstractly decompose each system into two interacting parts: part 1 in state
i1 and with energy E1(i1); and part 2 in state i2 and with energy E2(i2). It is then assumed that,
while the effective energy of part 2 does not deviate from its isolated value, the interaction between
both subsystems does affect the energy of part 1. The total energy of the interacting system may then
be written as

E(i1, i2) = E1(i1, i2) + E2(i2), (1)
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and the effective energy levels E1(i1) of part 1 become (see § 4 in [6])

E1(i1) = −kBT ln

⎡⎢⎢⎣
∑
i2

e−E1(i1,i2)/kBT e−E2(i2)/kBT

∑
i2

e−E2(i2)/kBT

⎤⎥⎥⎦ . (2)

This method is useful when there is incomplete statistical mechanical information, and the
interactions between the system (part 1) and the environment (part 2) are unknown. The modified
energy levels E1(i1) are anomalous in that they are effectively temperature-dependent. Inserting these
effective energy levels into the partition function

Z1 = ∑
i1

e−E1(i1)/kBT (3)

results in effective expressions for the internal energy U1 and the entropy S1 of the system

U1 = kBT2 ∂

∂T
logZ1 = 〈E1(i1)〉 − T

〈
dE1(i1)

dT

〉
, (4)

S1 =
U1

T
+ kB lnZ1 =

〈E1(i1)〉
T

+ kB lnZ1 −
〈

dE1(i1)
dT

〉
, (5)

which differ from the usual additive expressions by the incidence of the last terms (see § 2 in [6]).
It should be noted that, in the approximation in which interactions are neglected,

then E1(i1, i2) simply becomes E1(i1), and the temperature-dependent energy levels E1(i1)
reduce to the temperature-independent, purely mechanical energies E1(i1). In general, however,
temperature-dependence does emerge into effective energy levels. Indeed, when examining energy
levels in polarons, Whitfield and Engineer found two distinct types of temperature-dependence:
while the temperature-dependent levels E1(i1) in the partition function (15) determine the probability
that state i1 is occupied, the E1(i1)− T dTE1(i1) averaged in (4) determine the contribution actually
made to the total energy by that state when it is occupied [33]. Incidentally, Landsberg’s method of
temperature-dependent energy levels is briefly mentioned in Pathria and Beale’s landmark tektbook
on statistical mechanics (see ch. 3, footnote 1 in [34]).

In recent years, and independently of Landsberg’s work, a statistical mechanics and thermodynamics
at strong coupling has been developed on the basis of a Hamiltonian of mean force [30,35–37].
The Hamiltonian of mean force is indeed a special case of (1), where the Hamiltonian of E1(i1, i2) may
be decomposed as H1(i1, i2) = H1(i1) + I(i1, i2), such that the total Hamiltonian H(i1, i2) is expressed
as a sum of three terms:

H(i1, i2) = H1(i1) + I(i1, i2) + H2(i2). (6)

The terms H1 and H2 correspond, respectively, to the bare system and the bare environment,
and I is the ineraction Hamiltonian between the system and the enviroment. Averaging H1 and I
over the bare environment H2 results in a temperature-dependent Hamiltonian H1 of mean force for
the system given by [30]:

H1(i1) = −kBT ln

⎡⎢⎢⎣
∑
i2

e−{H1(i1)+I(i1,i2)}/kBTe−H2(i2)/kBT

∑
i2

e−H2(i2)/kBT

⎤⎥⎥⎦ . (7)

In a regime where the interactions I with the environment are negligible compared
to the bare system’s energy H1, the Hamiltonian of mean force H1 reduces to the bare
(and temperature-independent) H1. In the following section, we show that the thermostatistical
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theory at strong coupling developed on the basis of this Hamiltonian of mean force [30] reproduces the
subdivision potential proposed by Hill in his thermodynamics of small systems [20].

3. Strong Coupling and Hill’s Nanothermodynamics

In this section, we show that statistical mechanics at strong coupling provides a thermostatistical
basis to Hill’s nanothermodynamics. We start by providing a modest introduction to Hill’s
thermodynamic theory. We then use statistical mechanics at strong coupling to show that the
subdivision potential in Hill’s theory is reproduced when one considers the temperature-dependence of
the effective Hamiltonian which results from the interaction between the system and the environment.

3.1. Hill’s Subdivision Potential

In his nanothermodynamics [20], Hill starts by considering a traditional, homogeneous
thermodynamic system with temperature T, pressure p and chemical potential μ. As this system is
abstractly divided into smaller and smaller identical subsystems, the internal energy of each subsystem
becomes eventually comparable to the energy of interaction amongst the subsystems, and, in contrast
to traditional additive thermodynamics, the interaction can no longer be neglected. A new pair of
conjugate variables emerges, namely the amount M of identical subsystems, and the subdivision
potential E . This subdivision potential may be thought of as the difference between a subsystem’s true
internal energy and the energy it would have if the rest of the subsystems were absent. For sufficiently
large subsystems, the subdivision potential E is negligible.

After the subdivision process, each of the M identical subsystems has internal energy U ,
entropy S , volume V and N particles. Accounting for each subsystem’s subdivision potential E ,
the total energy of the system is given by a modified Euler equation:

MU = TMS − pMV + μMN +ME . (8)

And, for each individual subsystem, the energy becomes

U = U + E , (9)

with U given by the usual Euler expression

U = TS − pV + μN . (10)

Due to the incidence of the last term in (9), the internal energy U ceases to be a linear homogeneous
function of S , V and N . This extra term, the subdivision potential E , is the cornerstone of Hill’s
nonadditive nanothermodynamics. Paraphrasing Hill: small-system thermodynamics departs from
macroscopic thermodynamics in that [U ] is not a linear homogeneous function of [S , V and N ]. Hence and
extra term occurs in (9). This last two sentences epitomize the whole book (see p. 24 in [20]).

When the subsystem of interest is an open system with a definite chemical potential μ and
temperature T (imposed by the heat and particle reservoir made up of all other subsystems), then the
additional energy term E in (9) must stem from an alteration in pressure. Interactions with the
environment cause the system’s pressure to deviate from p and become instead an effective pressure p̂.
Then, the system’s internal energy is changed by an amount (see pp. 10, 24 in [20])

E = − ( p̂ − p)V . (11)

If the subsystem of interest is, instead, a closed system with a definite pressure p and temperature
T, then the additional energy must result from an alteration in chemical potential. Interactions with the
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environment cause the system’s chemical potential to deviate from μ and become instead an effective
μ̂. Then, the system’s internal energy is altered by an amount (see pp. 16, 24 in [20])

E = (μ̂ − μ)N . (12)

If the subsystem’s only environmental constraint is the temperature T, then interactions with the
environment will cause deviations in pressure (which becomes p̂ instead of p) and chemical potential
(which becomes μ̂ instead of μ). As a result, the additional subdivision energy E becomes

E = − ( p̂ − p) V + (μ̂ − μ)N , (13)

or, as Hill wrote it (p. 24 in [20]),
E = A+ pV − μN , (14)

with A ≡ U − TS = μ̂N − p̂V . As the subsystem’s size approaches the macroscopic limit,
the difference between ( p̂, μ̂) and (p, μ) vanishes, and, as a result U ≈ U � E in every case.

3.2. Statistical Mechanics at Strong Coupling

Like in the previous section, we consider a small system with internal energy U , volume V and N
particles. For simplicity, we constrain the system’s temperature to be T, while we allow the pressure
and chemical potential to fluctuate as a result of interactions with the environment. The partition
function Z1 may be written using the Hamiltonian of mean force (7):

Z1 = ∑
i

e−H1(i)/kBT , (15)

where, due to the nonvanishing interaction term in (7), H1(i) is temperature-dependent. In the
following, and for notational simplicity, we drop the subindex 1 used to label the system in Equation (7).
The partition function (15) may be used to find the internal energy (4) of the system, resulting in a
expression of the form (9), with

U ≡ 〈H(i)〉 , (16)

and

E ≡ −T
〈

∂H(i)
∂T

〉
. (17)

The quantity U is the reference energy for the bare system in the absence of coupling.
The additional term E is an excess energy resulting from strong interactions with the environment,
which cause the effective Hamiltonian to be temperature-dependent. When the interaction I is
absent (isolated system) or negligible (large system), Equation (7) simplifies and the derivative in (17)
becomes zero.

The system’s true pressure p̂ is given by the usual

p̂ = −∂U
∂V , (18)

or
p̂ = p + Δp, (19)

where p ≡ −∂U/∂V is the pressure in the absence of coupling, and

Δp ≡ −∂E

∂V (20)
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is the additional pressure due to the interactions with the environment captured in E . Likewise,
the chemical potential μ̂ is given by

μ̂ =
∂U
∂N , (21)

or
μ̂ = μ + Δμ, (22)

where μ ≡ ∂U/∂N is the chemical potential of the bare system, and

Δμ ≡ ∂E

∂N (23)

is the additional chemical potential resulting from interactions. Combining (20) and (23), we see that
the additional pressure and chemical potential change the internal energy of the strongly coupled
system by an amount

E = −VΔp +NΔμ. (24)

Expression (24) is equal to the subdivision potential (13) introduced by Hill for the canonical
case using thermodynamic arguments. However, in contrast to Hill’s purely thermodynamic
approach, the subdivision potential has now a thermostatistical interpretation in terms of the
temperature-dependence of the effective Hamiltonian (17). The method of statistical mechanics
at strong coupling has recently been used to analyze interfacial phenomena, easily producing laws
shown to be valid at the nanoscale [3].

Generalization to Other Ensembles

While the strong coupling analysis above was done for a system subject to canonical constraints,
a similar statistical mechanical analysis may be carried out for other environmental variables.

In the grand canonical ensemble, the system has a fixed chemical potential, and the energy
adjustment due to strong coupling is simply given by the first term in the right hand side
of (24), which is the same as expression (11) of Hill’s thermodynamic theory. Likewise, in the
isothermal-isobaric ensemble, the pressure of the system is fixed, and the energy correction E due to
strong coupling is given by the second term in the rhs of (24) alone, which is the same as expression (12)
in Hill’s theory.

The strong coupling contribution in each of the three ensembles is different, making them
nonequivalent. However, for large systems, the coupling term I in (7) becomes negligible with
respect to the bare system’s Hamiltonian. As a result, the temperature dependence of the effective
Hamiltonian vanishes, and, as expected, all ensemble descriptions become equivalent.

It should be noted that, in addition to the energy adjustment (17) needed to match the
environment’s temperature T, in the grand-canonical ensemble, the open system must also exchange
particles in order to match the surrounding chemical potential μ. Therefore, the Boltzmann factor
in (15) must be corrected with eμn(i), where n(i) is the effective number of particles in the open system.
A statistical mechanical analysis of this strongly coupled system results, not only in a modified energy
U = U + E , but also a modified number of particles N consisting of the bare 〈n(i)〉, and an additional
adjustment term −T 〈∂n(i)/∂T〉 resulting from the strong coupling.

Likewise, in the isothermal-isobaric ensemble, the small system must not only match the
environmental temperature T by modifying its energy. It must also match the environmental pressure
p by exchanging volume with its surroundings. Therefore, the Boltzmann factor in (15) must be
augmented with e−pV(i), where V(i) are effective volume states. This results, not only in a modified
energy U = U + E , but also a modified volume V consisting of two terms: the bare system’s volume
〈V(i)〉, and an additional term −T 〈∂V(i)/∂T〉 representing adjustments caused by strong coupling.
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4. Concluding Remarks

The additivity of extensive quantities is an assumption upon which classical thermodynamics
is based. However, this property does not apply to small systems [20] or, generally, to systems with
sufficiently long-range interactions [1]. In this article, we have reviewed and shown the connection
between three different theories proposed for the thermodynamic treatment of systems not satisfying
the additivity ansatz. The differences and similarities between the three theories are illustrated
in Figure 1.

Figure 1. Illustration of the main features of the three small-system theories. In Landsberg’s theory,
the energy levels E1 of the system (blue sphere) are modified into E1 due to its interaction with the
(red) environment. Statistical mechanics at strong coupling starts with a total Hamiltonian consisting
of the environment (red), the system (blue) and the interaction (green); averaging the system and the
interaction over the environment results in a temperature-dependent Hamiltonian of mean force H1.
Hill’s nanothermodynamics considers the system of interest as if it were surrounded by a macroscopic
set of interacting replicas; the interaction causes the effective energy to depart from U and become U .

Landsberg’s pioneering work consisted of assuming that when an otherwise isolated system
comes into contact with a thermal bath, its energy levels are redistributed due to the interaction [6].
This results in an effective energy landscape that depends on the temperature of the bath, and it
produces an extended thermostatistical framework that accounts for unknown interactions with the
thermal environment (see Equations (4) and (5) above).

Years later, Hill proposed a thermodynamic framework for nonadditive systems by describing the
mismatch between the internal energy of a small system when it is isolated vs. when it is embedded in
a macroscopic ensemble of identical replicas. To account for this difference, he introduced the concept
of subdivision potential, a new thermodynamic variable also known as replica energy. See [20,23] and
Section 3.1 above.

More recently, a thermostatistical framework at strong coupling [30] has been formulated to account
for the presence of the environment through a Hamiltonian of mean force (7). We show this modified
Hamiltonian yields a temperature-dependent energy landscape as earlier suggested by Landsberg
(see Equation (2)), and that it provides a thermostatistical foundation (17) for Hill’s subdivision
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potential E as it makes its appearance in the internal energy (9). Furthermore, we show that the
thermostatistical treatment of the temperature-dependent Hamiltonian of mean force in the canonical
ensemble results in (24), which is the subdivision potential (13) obtained by Hill. Hence, we assert that
statistical mechanics at strong coupling is the bridge between Landsberg’s ’temperature-dependent
energy levels’ and Hill’s nanothermodynamics. Indeed, and despite their independent inception and
evolution, these three powerful theories describe similar phenomena, namely the nonadditivity caused
by strong interactions.
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