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Multiple scales in physics

Macro-world Earth UniverseAtoms and molecules

Physics: What is the difference and the interaction between the different “worlds”?

Mathematics: How the asymptotic transitions between the different scales are organized?



Multiple scales in porous media

Molecular dynamics

Hydrodynamic (pore) scale Continuous (Darcy) scale Reservoir scale

Hydrodynamics in porous
media (Darcy)

Hydrodynamics (Navier-
Stokes)

Geological
heterogeneity

Molecular scale

How to transfer:
- From the molecular properties to the flow equations
- From the laboratory experiments to the reservoir level
- From the fine-grid to the coarse-grid reservoir description
- …..

Gray, Miller: Introduction to thermodynamics constrained averaging, 2014



Traditional ways of upscaling:

Simple averaging Weight averaging
1s

2s

𝑚 (𝑥) =
1

𝑉
න

𝑉−𝑥

𝑚 𝑦 𝑑𝑦

න𝑤 𝑦 𝑑𝑦 = 1

𝑚 (𝑥) = න𝑚 𝑥 − 𝑦 𝑤 𝑦 𝑑𝑦 = 𝑚 ∗ 𝑤

Here 𝑤(𝑦) is the weight function: 𝑦

𝑤(𝑦)

𝑦
−𝑅 𝑅Support

R.E-V – representative elementary 
volume

Other methods are system-specific
(statistical mechanics, homogenization in periodic 
media, multiphase flows in porous media,…)

Mention non-uniqueness



Weight averaging as averaging over “random step”
𝑚 (𝑥) = න𝑚 𝑥 − 𝑦 𝑤 𝑦 𝑑𝑦 = 𝑚 ∗ 𝑤

Consider a random variable (“step”) 𝒀 with the distribution 𝑤 𝑦 .  The last equality may be interpreted as 

𝑚 (𝑥) = 𝑚 𝑥 − 𝒀 ,

where averaging on the rhs is over all 𝒀.

That is, weighted averaging may be interpreted as an average value of a density in a given point, coming 
there by a random step.



Asymptotics – R.E.V. 
(representative elementary volume)

The R.E.V. should be “infinitely large” 
compared to molecular sizes…

…but “infinitely small” compared to the 
size of a problem

- How is this transition made mathematically?
- What happens with multiple asymptotic transitions?
- Is the result unique, or it depends on a procedure? 

… …



Continuous upscaling











Continuous axis of scales

𝛼1 = 1: 200 𝛼2 = 1: 500 𝛼3 = 1: 1000 𝛼4 = 1: 2000

𝑠
𝑠 = − ln 𝛼The scale parameter:

𝑠 increases from a fine to a coarse scale



Upscaling = Scaling + Averaging (“smoothing”)

𝑠

𝑠1

𝑥

𝑠3

𝑠4

𝑠2

+scaling

𝑠

𝑠1

𝑥

𝑠3

𝑠4

𝑠2

averaging

Scaling: Simple change of the scale without loss of the detail

Averaging: Smoothing, loss of the resolution



Transition to the “next scale”

Scaling after averaging: Averaging after scaling:

𝑚 (𝑥) = 𝑚 𝑥 − 𝒀

Averaging:

𝑚𝛼 (𝑥) =
1

𝛼
𝑚

𝑥

𝛼

Scaling:

𝑚 𝛼(𝑥) =
1

𝛼
𝑚

1

𝛼
𝑥 − 𝒀

𝑚 𝛼(𝑥) =
1

𝛼
𝑚

1

𝛼
𝑥 − 𝒀

- The two expressions are not equivalent



Transition to the “next scale”: Asymptotic expansion
1

𝛼
= 𝑒𝑠 ≈ 1 + 𝑠; 𝑚 𝑥 − 𝒀 ≈ 𝑚 𝑥 − 𝒀

𝜕𝑚

𝜕𝑥
+

1

2
𝒀2

𝜕2𝑚

𝜕𝑥2
;  𝒀 = 0:

Scaling after averaging: Averaging after scaling:

𝑚 𝛼(𝑥) = 𝑒𝑠 𝑚 𝑒𝑠 𝑥 − 𝒀

≈ (1 + 𝑠) 𝑚 (1 + 𝑠)𝑥 − (1 + 𝑠)𝒀

𝑚𝛼  (𝑥) = 𝑒𝑠 𝑚 𝑒𝑠𝑥 − 𝒀

≈ (1 + 𝑠) 𝑚 (1 + 𝑠)𝑥 − 𝒀

≈ 𝑚 𝑥 + 𝑠𝑥 − 𝒀 + 𝑠𝑚(𝑥)

Expansion and neglect of the higher-order terms: 𝑚 𝛼 𝑥 ≈ 𝑚𝛼 𝑥 = 𝑚𝑠(𝑥)

𝑚𝑠 𝑥 − 𝑚 𝑥

𝑠
= 𝑚 𝑥 + 𝑥

𝜕𝑚

𝜕𝑥
+

𝒀2

2𝑠

𝜕2𝑚

𝜕𝑥2

𝜕𝑚𝑠

𝜕𝑠
=

𝜕

𝜕𝑥
𝑥𝑚𝑠 + 𝑑0

𝜕2𝑚𝑠

𝜕𝑥2
, 𝑑0 =

𝒀2

2𝑠

The two expressions 
become equivalent in 
the limit of a small step



Theory of upscaling: Uniqueness

𝛼 = 1: 200 𝛼 = 1: 500 𝛼 = 1: 1000 𝛼 = 1: 2000

𝑠

𝑊13 = 𝑊12𝑊23

Rule 1. If a transition between scales i and j is performed, the “path” does not matter:

These rules are sufficient to build the mathematics of upscaling and derive the upscaling equation 
(similar to the theory of continuous Markov processes)

Rule 2. The transition should be continuous: If scales 1 and 2 approach each other then W12 should tend to unity 
(identity) transformation.



Upscaling of densities (1D, steady-state flows):
𝜕𝑚𝑠

𝜕𝑠
=

𝜕

𝜕𝑥
𝑥 − 𝑏0 𝑠 𝑚𝑠 + 𝑑0

𝜕2𝑚𝑠

𝜕𝑥2
Scale transformation

Scaling
Displacement of x=0

Smoothing 
(averaging)

(*)

𝑠

𝑠1
𝑥

𝑠3

𝑠4

𝑠2

𝑠

𝑠1

𝑥

𝑠3

𝑠4

𝑠2

+𝛛𝒎𝒔

𝝏𝒔
= scaling averaging

In the limit of infinitely small steps, scaling and averaging are interchangeable.
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What needs to be upscaled? The flow equations:
Mass:

Concentration:

Momentum:

Energy:

𝜕𝜌

𝜕𝑡
+ ∇ ⋅ 𝜌𝒗 = 𝑞𝑚

𝜕𝐶

𝜕𝑡
+ ∇ ⋅ 𝐶𝒗 + 𝐽𝐷 = 𝑞𝐶

𝜕𝜌𝒗

𝜕𝑡
+ ∇ ⋅ 𝜌𝒗𝒗 + 𝑃𝑰 + Π = 𝑭

𝜕

𝜕𝑡
𝐸 +

𝜌𝑣2

2
+ ∇ ⋅ 𝐸 +

𝜌𝑣2

2
+ 𝑃 𝒗 + 𝒒 = 𝑸
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General form:
𝜕𝑚

𝜕𝑡
+ ∇ ⋅ 𝑱 = 𝑛



What needs to be upscaled
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𝜕𝑚

𝜕𝑡
+ 𝛻 ⋅ 𝑗 = 𝑞 A transport (balance) equation:

Densities:
Mass density 𝜌, concentration 𝑐, 
momentum 𝑗 = 𝜌𝑣, energy 𝑒…

Fluxes:
Mass flux 𝑗 = 𝜌𝑣, momentum flux 
𝐽 = 𝜌𝑣𝑣 + Π, energy flux 𝑗𝑒 = 𝜌𝑣ℎ…

Production:
Density per unit time

• Different physical values should be upscaled  according to the different rules

• The overall form of the equation should be preserved under upscaling



Example: Diffusion equation
𝜕𝐶

𝜕𝑡
+ ∇ ⋅ 𝐽𝐷 = 𝑞𝐶 , 𝐽𝐷 = −𝐷∇𝐶

1. 𝐶 is upscaled like density:
𝜕𝐶𝑠

𝜕𝑠
=

𝜕

𝜕𝑥
𝑥𝐶𝑠 + 𝑑0

𝜕2𝐶𝑠

𝜕𝑥2

2. 𝐽𝐷 is upscaled like density: 𝜕𝐽𝐷,𝑠

𝜕𝑠
=

𝜕

𝜕𝑥
𝑥𝐽𝐷,𝑠 + 𝑑0

𝜕2𝐽𝐷,𝑠

𝜕𝑥2

//The rules for upscaling derivatives3. 𝑞𝑐 , ∇𝐶 are upscaled like the derivatives of the density

//Theorem about upscaling fluxes

4. The rule for upscaling the diffusion coefficient 𝐷 is derived 
from upscaling the products (𝐷∇𝐶).

These rules may be different 

//The rules for upscaling the products



Continuous upscaling of diffusion coefficient

𝑠

3D plot:



Convective diffusion equation (1D, steady state)

𝑑

𝑑𝑥
𝐷 𝑥

𝑑𝑐(𝑥)

𝑑𝑥
− 𝑣

𝑑

𝑑𝑥
𝑐 𝑥 = 𝑞(𝑥)

Original Averaged (upscaled)

𝑑

𝑑𝑥
𝐷𝑎𝑣

𝑑𝑐𝑎𝑣(𝑥)

𝑑𝑥
− 𝑣𝑎𝑣

𝑑

𝑑𝑥
𝑐𝑎𝑣 𝑥 = 𝑞𝑎𝑣

Diffusion coefficient Source term

A procedure for transition from periodic to average diffusion coefficients is to be developed



Case 1: “Just” diffusion equation
𝑑

𝑑𝑥
𝐷 𝑥

𝑑𝑐(𝑥)

𝑑𝑥
= 0

Evolution of the diffusion coefficient:

𝜕

𝜕𝑠

1

𝐷𝑠(𝑥)
=

𝜕

𝜕𝑥
𝑥 − 𝑏0 𝑠

1

𝐷𝑠(𝑥)
+ 𝑑0 𝑠

𝜕2

𝜕𝑥2

1

𝐷𝑠(𝑥)

- the inverse diffusion coefficient is upscaled like a density

Asymptotic behavior:

1

𝑒𝑠𝐷𝑠(𝑒𝑠𝑥)
→

1

𝐷0 𝑥
- the same as for the direct upscaling

Consequence of scaling



Case 2: Diffusion equation with a source

Evolution of the diffusion coefficient:

𝜕

𝜕𝑠

𝐽𝑠(𝑥)

𝐷𝑠(𝑥)
=

𝜕

𝜕𝑥
𝑥 − 𝑏0 𝑠

𝐽𝑠(𝑥)

𝐷𝑠(𝑥)
+ 𝑑0 𝑠

𝜕2

𝜕𝑥2

𝐽𝑠(𝑥)

𝐷𝑠(𝑥)

𝜕𝐽𝑠(𝑥)

𝜕𝑠
=

𝜕

𝜕𝑥
𝑥 − 𝑏0 𝑠 𝐽𝑠(𝑥) + 𝑑0 𝑠

𝜕2𝐽𝑠(𝑥)

𝜕𝑥2

Asymptotic behavior:

𝐽𝑠(𝑒𝑠𝑥)

𝑒2𝑠𝐷𝑠(𝑒𝑠𝑥)
→

𝐽0(𝑥)

𝐷0 𝑥
; 𝑒−𝑠𝐽𝑠 𝑒𝑠𝑥 → 𝐽0(𝑥)

- the same as for the direct upscaling

𝑑

𝑑𝑥
𝐷 𝑥

𝑑𝑐(𝑥)

𝑑𝑥
= 𝑞 𝑥 , 𝑞(𝑥) = 0

𝐽 𝑥 = 𝐷 𝑥
𝑑𝑐(𝑥)

𝑑𝑥
= 𝐽 𝑥0 + න

𝑥0

𝑥

𝑞 𝑥 𝑑𝑥

Flux

Boundary condition

𝐷 𝑥0

𝑑𝑐(𝑥0)

𝑑𝑥
= 𝐽 𝑥0

the values of 
𝐽𝑠(𝑥)

𝐷𝑠(𝑥)
 and 𝐽𝑠(𝑥) are upscaled like densities  Either velocity, or the boundary 

conditions are displaced



Case 3: Diffusion with convection
𝑑

𝑑𝑥
𝐷 𝑥

𝑑𝑐(𝑥)

𝑑𝑥
− 𝑣

𝑑𝑐(𝑥)

𝑑𝑥
= 0

Evolution of the diffusion coefficient:

𝜕

𝜕𝑠

1

𝐷𝑠(𝑥)
=

𝜕

𝜕𝑥
𝑥 − 𝑏0 𝑠

1

𝐷𝑠(𝑥)
+ 𝑑0 𝑠

𝜕2

𝜕𝑥2

1

𝐷𝑠(𝑥)
+ 𝑑0 𝑠 𝑣

𝜕

𝜕𝑥

1

𝐷𝑠 𝑥 2

Asymptotic behavior:

1

𝑒𝑠𝐷𝑠(𝑒𝑠𝑥)
→

1

𝐷0 𝑥

(It seems so, but no proof,
only numerical check)



Diffusion equation with convection
𝑑

𝑑𝑥
𝐷 𝑥

𝑑𝑐(𝑥)

𝑑𝑥
− 𝑣

𝑑𝑐(𝑥)

𝑑𝑥
= 0

Evolution of the diffusion coefficient:

𝜕

𝜕𝑠

1

𝐷𝑠(𝑥)
=

𝜕

𝜕𝑥
𝑥 − 𝑏0 𝑠

1

𝐷𝑠(𝑥)
+ 𝑑0 𝑠

𝜕2

𝜕𝑥2

1

𝐷𝑠(𝑥)
+ 𝑑0 𝑠 𝑣

𝜕

𝜕𝑥

1

𝐷𝑠 𝑥 2

Asymptotic behavior:

1

𝑒𝑠𝐷𝑠(𝑒𝑠𝑥)
→

1

𝐷0 𝑥

(It seems so, but no proof,
only numerical check)



Diffusion equation with convection
𝑑

𝑑𝑥
𝐷 𝑥

𝑑𝑐(𝑥)

𝑑𝑥
− 𝑣

𝑑𝑐(𝑥)

𝑑𝑥
= 0

Evolution of the diffusion coefficient:

𝜕

𝜕𝑠

1

𝐷𝑠(𝑥)
=

𝜕

𝜕𝑥
𝑥 − 𝑏0 𝑠

1

𝐷𝑠(𝑥)
+ 𝑑0 𝑠

𝜕2

𝜕𝑥2

1

𝐷𝑠(𝑥)
+ 𝑑0 𝑠 𝑣

𝜕

𝜕𝑥

1

𝐷𝑠 𝑥 2

Asymptotic behavior:

1

𝑒𝑠𝐷𝑠(𝑒𝑠𝑥)
→

1

𝐷0 𝑥

(It seems so, but no proof,
only numerical check)



Conclusions

• The theory of continuous upscaling is developed

• The laws for upscaling of densities and fluxes are derived

• The theory is applied to upscaling of the diffusion equation and 
diffusion coefficients

• Continuous upscaling may be possible and gives asymptotic results 
even if the direct averaging results in large deviations

• Asymptotic behavior of the continuously upscaled diffusion 
coefficients is the same as under direct averaging

• In the case of convective diffusion, large differences between fine-
scale and core-scale solutions cannot be eliminated
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Thank you!

Questions?

”Unity Universe” by Peter Steineck
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