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Multiple scales in physics

Atoms and molecules Macro-world Earth

Physics: What is the difference and the interaction between the different “worlds”?

Mathematics: How the asymptotic transitions between the different scales are organized?

Universe
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= Multiple scales in porous media

Molecular scale Hydrodynamic (pore) scale Continuous (Darcy) scale Reservoir scale
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Molecular dynamics Hydrodynamics (Navier- Hydrodynamics in porous Geological
Stokes) media (Darcy) heterogeneity

How to transfer:

From the molecular properties to the flow equations
From the laboratory experiments to the reservoir level
From the fine-grid to the coarse-grid reservoir description

Gray, Miller: Introduction to thermodynamics constrained averaging, 2014
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Traditional ways of upscalisng:

S

Weilght averaging

Simple averaging

tw(y)
! (m)G6) = [ mx = yw)dy = m xw
M)~ mOdy
e Here w(y) is the weight function:
_ —R| Support ]
R.E-V — representative elementary jw(y)dy =1
volume

Mention non-uniqueness

Other methods are system-specific
(statistical mechanics, homogenization in periodic
media, multiphase flows in porous media,...)




Weight averaging as averaging over “random step”

(m)(x) = j mx — y)w(y)dy = m *w

Consider a random variable (“step”) Y with the distribution w(y). The last equality may be interpreted as

(m)(x) = (m(x = Y)),

where averaging on the rhs is over all Y.

That is, weighted averaging may be interpreted as an average value of a density in a given point, coming
there by a random step.
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Asymptotics — R.E.V.
(representative elementary volume)

The R.E.V. should be “infinitely large”
compared to molecular sizes...
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...but “infinitely smal
size of a problem

- How is this transition made mathematically?
- What happens with multiple asymptotic transitions?
- Is the result unique, or it depends on a procedure?
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Continuous upscaling
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a, = 1:2000

The scale parameter: s=—|lnha

S increases from a fine to a coarse scale
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Upscaling = Scaling + Averaging (“smoothing™)

AS 1s
S :/ S4
S =& i - 53

’ / calin T
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Scaling: Simple change of the scale without loss of the detail

Averaging: Smoothing, loss of the resolution




Transition to the “next scale”

Averaging:

(m)(x) = (m(x = Y))

()
/ \

Scaling:

mg (x) =

Scaling after averaging: Averaging after scaling:

1 1 (m) (X)=l m<lx—Y>
(m)q (x) = — <m (E (x — Y)>> “ a\ \a

- The two expressions are not equivalent



Transition to the “next scale”: Asymptotic expansion

1 om 1 _0°m

Ezes ~1+s;, mkx-Y) zm(x)—YE+§Y2 PRy (Y) = 0:
Scaling after averaging: Averaging after scaling:
(m)e(x) = e5(m(eS(x — Y))) (my) (x) =e’(m(e’x —Y))
~ (1 +s)(m(((1 + )x — (1 +5)Y))) ~ (1+s)(m(((1 +s)x —Y)))

The two expressions
~ (m(x + (sx — Y))> + sm(x) become equivalent in
the limit of a small step

Expansion and neglect of the higher-order terms: (m),(x) = (my)(x) = mg(x)

mg(x) —m(x) om (Y?)93%*m
S —m(x)+xax T 2s 0x?2

om, 0 d%mg (Y?)

ds  Ox (xms) + do 0x2 "’ do = 2s




= Theory of upscaling: Uniqueness

a = 1:2000

a=1:200

Rule 1. If a transition between scales i and j is performed, the “path” does not matter:
W13 — le W23

Rule 2. The transition should be continuous: If scales 1 and 2 approach each other then W;, should tend to unity
(identity) transformation.

These rules are sufficient to build the mathematics of upscaling and derive the upscaling equation
(similar to the theory of continuous Markov processes)
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Upscaling of densities (1D, steady-state flows):

Scale transformation ——
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Scaling

‘(ZZ\): aax,.@ ””S *@0 a;;) (*)

Smoothing

Displacement of x=0 (averaging)
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In the limit of infinitely small steps, scaling and averaging are interchangeable.
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What needs to be upscaled? The flow equations:

Mass:

dp
¢ TV (oY) = am

Concentration:

aC
—+V-(Cv+]Jp) =qc

dt
Momentum:
dpv
%+V-(pvv+Pl+H) =F
Energy:

0 E+pv2 +V E+mﬂ+P +q|=
ot 2 2 vtq|=0



What needs to be upscaled? The flow ec

Mass:
9@‘?— V- (pv) =
Concentration:

E*‘V'(CV‘I‘]D):CIC

Momentum:

Energy:

Densities

uations:



What needs to be upscaled? The flow equations:

Mass:

o). ~ .
_@fl_ v Densities
ot

Concentration:

E-I_V.@:: dc

Fluxes

Momentum:

Energy:



What needs to be upscaled? The flow equations:

Mass:

5 . = "
_j@q_v. N Densities
dt
Concentration:
E +V- -(Cv +]D):= Fluxes
Momentum:

Sources

Energy:




What needs to be upscaled? The flow equations:

Mass:

oo . N\ yanN iti
_@_T_ = Densities

dt
Concentration:

E +V- -(Cv -|-]D):= Fluxes
Momentum:

Sources

Energy:

General form: ‘ aa—T +V-J=n
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What needs to be upscaled

A transport (balance) equation: 5 + V %: @\
t

Densities:
Mass density p, concentration c,
momentum j = pv, energy e...

Fluxes:
Mass flux j = pv, momentum flux
J] = pvv + 11, energy flux j, = pvh...

Production:
Density per unit time

* Different physical values should be upscaled according to the different rules

* The overall form of the equation should be preserved under upscaling

23



Example: Diffusion equation

acC
E‘I'V']D = (qc,

2
S

0x?2

. . . dCs 0
1. C is upscaled like density: R = F (xC,) + d,

. , " d/p, 0 ale,
2./ is upscaled like density: > S = o (xJps) + do >

s Jdx?

3. q., VC are upscaled like the derivatives of the density

4. The rule for upscaling the diffusion coefficient D is derived
from upscaling the products (DVC).

These rules may be different

—DVC

//Theorem about upscaling fluxes

//The rules for upscaling derivatives

//The rules for upscaling the products



D(x).q(x)
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Continuous upscaling of diffusion coefficient
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3D plot:
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Convective diffusion equation (1D, steady state)

Original Averaged (upscaled)

Source term

25
2
2_
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A procedure for transition from periodic to average diffusion coefficients is to be developed
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Case 1: “Just” diffusion equation

d < x )dc(x))

Evolution of the diffusion coefficient:

9/ 1 , 92 [ 1
65<D (x)) < (x = bo D() 9x2 (Ds(x)>

- the inverse diffusion coefficient is upscaled like a density

Asymptotic behavior:

@S> K <ﬁ

Consequence of scaling

> - the same as for the direct upscaling
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Case 2: Diffusion equation with a source

Asymptotic behavior:

d d
( () 26X )) = (), () = 0

e [\ o
M BZSDS(BSX) <D0(x) ]s(e X) - (]O(x»
J(x) = D(x) de(x) = J(xy) + xq(x)dx - the same as for the direct upscaling

X0
Boundary condition

d
D(xg) C(xO) J (%)

Evolution of the diffusion coefficient:

d (Js(x)\ 0 Js(x) 0% [ Js(x)
ds (Ds(x)> =52 (X )3 oo TS5z (D (x)>

3. 9 97,
B9 2 (= bo) ) + dols) T2

das
Js(x)

the values of ~=~and J;(x) are upscaled like densities Either velocity, or the boundary

s(x) conditions are displaced
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Case 3: Diffusion with convection

d dc(x) dc(x)
(D( ) - =
X
Evolution of the diffusion coefficient:
0 1 0?2 1 0 1
=—(x—0>b +d
ds (DS (x)> (X = b)) ( 3+ dol9) 53 (DS (x)> o($)v 7 <D5 (x)2>
05 . \\\ A
Asymptotic behavior: N ANV
04 r \ -\.
1 1 . a, \
- 3 | §0.3— \
eSD;(esx) Dy(x) e z \
(It seems so, but no proof, 0. 01!
only numerical check) o

o

o
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Diffusion equation with convection

d dc(x dc(x
( Do ) _ 4@ _
dx
Evolution of the diffusion coefficient:
d 1 02 1 0 1
=—(x—0>b S + dy(s)v
ds (Ds(x)> ( ) ( ) ( )axz <Ds(x)> (s) dx <D5(x)2>
05 \\\ A
Asymptotic behavior: LT BN /N
04| \
1 1 Y\
- 3 \ Soaf \
eSD.(eSx) \Dy(x) el < \
(It seems so, but no proof, 01 01t
only numerical check) L | ) |
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Diffusion equation with convection

Evolution of t

0.

exp(s)

0 1
ds <DS (x))*o

W oo, -

Asymptotic

1
eSD(eSx)

(It seems so,
only numerit
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Conclusions

* The theory of continuous upscaling is developed
* The laws for upscaling of densities and fluxes are derived

* The theory is applied to upscaling of the diffusion equation and
diffusion coefficients

* Continuous upscaling may be possible and gives asymptotic results
even if the direct averaging results in large deviations

* Asymptotic behavior of the continuously upscaled diffusion
coefficients is the same as under direct averaging

* In the case of convective diffusion, large differences between fine-
scale and core-scale solutions cannot be eliminated
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Thank you!

”Unity Universe” by Peter Steineck
33
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