Research Theme 2: Deformable porous media

Understand the variety of patterns that form under the combined action of Coulomb friction, capillary- and viscous forces and make contact with non-equilibrium statistical mechanics on the theoretical and field observations on the empirical side, as well as hydrofracture processes where the solid matrix breaks down locally.

Mazes: Pattern formed in a drying process where a mixture of grains and fluid (golden area) between two glass plates is invaded by air (black area.) The black-and-white pictures are computer simulations of the same.

Phase diagram of different shapes that are created when hanging The solid filling fraction, and the injection rate [Sandnes 2011]. We find capillary fingering and viscous fingering which well-known patterns in immiscible two-phase in flow porous media, hydraulic are fracturing – in addition to a host of patterns never seen before.

These processes are studied both in simple table top-models and by algorithmic models that reproduce the many patterns observed in the laboratory. There are also some geological realizations of these patterns. As the deformation rates increase, different forces come into play. First, viscous forces will qualitatively change the displacement patterns by gradually de-mobilizing the Coulomb friction. Then inertial forces will enter the picture along with a stick-slip dynamics. The corresponding numerical models, which take these forces into account, become more challenging as the forces become less local. These models are built, from the simple to the more complex. Apart from verifying quantitative agreement with corresponding experiments, thereby establishing the key mechanisms at work, the simulations will be used to explore a minimum power principle. This principle is already established in the simplest simulations that only include pressure, capillary and Coulomb friction.


Principal Investigator RT 2: 
Professor Eirik Grude Flekkøy.

Profs. Dick Bedeaux, Alex Hansen, Knut Jørgen Måløy, Ursula Gibson, Bjørn Jamtveit, Signe Helene Kjelstrup, Daniel Rothman, Bjørnar Sandnes, Stéphane Santucci, Renaud Toussaint.

Srutarshi Pradhan, Guillaume Dumazer.

Postdoctoral Fellows: 
Fredrik Kvalheim Eriksen, Marcel Moura.

Media coverage

  1. Titan: Ny kunnskap om propper i rør viktig for industrien, 18 July 2016

Selected articles before center launch

  1. Dumazer G., Sandnes B, Ayaz M., Måløy K.J., Flekkøy E., Frictional Fluid Dynamics and Plug Formation in Multiphase Millifluidic Flow, Phys. Rev. Lett., 117, 028002 (2016). doi:10.1103/PhysRevLett.117.028002
  2. M. Niebling, R. Toussaint, E.G. Flekkøy and K.J. Måløy, Dynamic aerofracture or hydrofracture of dense granular packing: pressure and viscosity control of the fracture patterns. Phys. Rev. E 86 (2015)
  3. J.A. Eriksen and E.G. Flekkøy Numerical approach to frictional fingers, Phys. Rev. E 92 (2015)
  4. L. Laurson, X. Illa, S. Santucci, K.T. Tallakstad, K.J. Måløy, and M. Allava, The average avalanche shape: universality beyond the mean field. Nat. Commun. 4:2927 doi: 10.1038/ncomms3927 (2013)
  5. K.T. Tallakstad, R. Toussaint, S. Santucci, K.J. Måløy, Non-Gaussian Nature of Fracture and Survival of Fat-Tail Exponenets, Phys. Rev. Lett, 110, 145501 (2013). doi:10.1103
  6. B. Sandnes, E.G. Flekkøy, H.A. Knudsen, K.J. Måløy, and H. See Patterns and flow in frictional fluid dynamics, Nature Comm. 2 doi:10.1038/ncomms1289 (2011)
  7. J. L. Vinningland, Ø. Johnsen, E.G. Flekkøy, R. Toussaint and K.J. Måløy, Granular Rayleigh- Taylor instability: experiment and simulation, Phys. Rev. Lett. 99 048001 (2007). doi:10.1103

Recent articles

  1. Eriksen, Fredrik Kvalheim; Toussaint, Renaud; Turquet, Antoine Léo; Måløy, Knut Jørgen & Flekkøy, Eirik Grude (2017). Pneumatic fractures in confined granular media. Physical Review E. Statistical, Nonlinear, and Soft Matter Physics.  ISSN 1063-651X. . doi: 10.1103/PhysRevE.95.062901
  2. Flekkøy, Eirik Grude; Pride, Steven R. & Toussaint, Renaud (2017). Onsager symmetry from mesoscopic time reversibility and the hydrodynamic dispersion tensor for coarse-grained systems. Physical Review E. Statistical, Nonlinear, and Soft Matter Physics.  ISSN 1063-651X.  95(2) . doi:10.1103/PhysRevE.95.022136
  3. Pride, Steven R; Vasco, Donald W; Flekkøy, Eirik Grude & Holtzman, Ran (2017). Dispersive transport and symmetry of the dispersion tensor in porous media. Physical Review E. Statistical, Nonlinear, and Soft Matter Physics.  ISSN 1063-651X.  95(4) . doi:10.1103/PhysRevE.95.043103

<< Research Theme 1: Thermodynamics of flow in porous media

Research Theme 3: Experimental characterization of immiscible two-phase flow in porous media >>